

17 October 2017

DEACON POINT SUBDIVISION STAGES 1 AND 2, RIVERHEAD

GEOTECHNICAL COMPLETION REPORT

CABRA PROPERTIES LIMITED

Ref: AKL2016_0326AF Rev: 0

Table of Contents

1.	INTF	ODUCTION
2.	PRO	JECT BACKGROUND
3.	DES	CRIPTION OF EARTHWORKS
4.	GEO	TECHNICAL QUALITY CONTROL
	4.1.	Site Observations
	4.2.	Compaction Control
5.	EVA	LUATION OF COMPLETED EARTHWORKS
	5.1.	Natural Hazards
	5.2.	Land Stability and Erosion Control
	5.3.	Retaining Walls
	5.4.	Palisade Walls
	5.5.	Fill Induced Settlement
	5.6.	Service Line Trenches
	5.7.	Subsoil Drains
	5.8.	Road Subgrades
	5.9.	Design of Shallow Foundations
	5.9.1	. Bearing Capacity
	5.9.2	. Foundation Settlements
	5.9.3	. Soil Expansiveness Classification
	5.10.	Topsoil Depths
6.	CLO	SURE

Appendices

Appendix A – Statement of Professional Opinion as to the Suitability of Land For Building Development

Appendix B - Drawings

Appendix C - Laboratory Test Data

Appendix D - Field Test Data

Appendix E - Producer Statements

1. INTRODUCTION

In accordance with our instructions, this Geotechnical Completion Report has been prepared for Cabra Properties Ltd as part of the documentation to be submitted to Auckland Council following the earthworks to form Stages 1 and 2 of the Deacon Point Subdivision development. Construction of this residential subdivision has been undertaken in accordance with the Auckland Council Resource Consent number SLC-67504 and Engineering Approval letter for Earthworks, Retaining, Roading and Stormwater dated 25 November 2016 and Engineering Approval letter for Wastewater and Water Supply dated 23 January 2017. Specific structures constructed during the civil works to create these stages of the subdivision include timber pole retaining walls, a palisade wall (in-ground wall) and segmental block retaining walls.

This report contains our Suitability Statement, specific comments related to items raised in the Resource Consent, relevant test data and the Cato Bolam Consultants Limited as-built plan set as provided in Appendix B.

This report covers the construction period October 2016 to July 2017 and is intended to be used for certification purposes for new lots (listed below) created from Lot 1 DP 124412 as follows:

- 48 new residential lots numbered 1 to 34 and 52 to 65;
- 3 new roads named Riverhead Point Drive (Road 1), William Blake Way (Road 2) and Drovers Way (Road 3) respectively and an extension to existing Dinning Road.

Stages 1 and 2 of the Deacon Point Subdivision are located off Dinning Road in Riverhead. As can be seen from the as-built plans, 44 of the lots have been affected by filling as part of the earthworks operations to a maximum depth of approximately 7.5 metres.

2. PROJECT BACKGROUND

The geotechnical investigations and design for this development were undertaken by CMW Geosciences as presented in the following reports:

- CMW Geotechnical Investigation Report referenced AKL2016_0326AB Rev.2, dated 13 May 2016.
- CMW Palisade Wall Design Report referenced AKL2016 0326AC Rev 0, dated 01 July 2016.
- CMW Geotechnical Retaining Wall Design Report referenced AKL2016_0326AD Rev 1, dated 11 July 2016.
- CMW Design Parameters for Proposed Boardwalk referenced AKL2016_0326AE Rev 0, dated 27 April 2017.

3. DESCRIPTION OF EARTHWORKS

Heritage protection works began in October 2016 following the identification of archaeological remains in the southern portion of the site covering lots 8 and 9 intersecting road 2.

Site stripping had commenced in early October 2016 starting with topsoil stripping of the temporary silt pond at the northern end of the site and the significant excavation of large pines at the western site boundary.

Cut and fill began in October 2016 which included conditioning of natural borrow sources and stockpiled fill from the bulk earthworks making up the remaining portions of the site. These earthworks continued between October 2016 and May 2017, with the majority of the earthworks formed to finished levels by January 2017.

DCP testing of the prepared subgrades for roads not already sealed were undertaken by CMW to provide confirmation of pavement strength to Cabra Properties Limited. Road stabilisation works and the placement of base course metal commenced in February 2017 and continued to June 2017.

Civil construction works continued throughout early 2017 which included construction of kerb and channel, topsoiling works, footpaths, combined services trenches and lot connections. Retaining wall construction including timber post and segmental block gravity walls were undertaken between early January 2017 and June 2017 with final works for these walls including fencing and drainage outlet works undertaken in August and September 2017. Final asphalt placement on all unsealed roads was completed by early August for these stages.

The main items of plant used by the earthworks subcontractor, BHE Limited, included:

- 2 X D6 Bulldozers and Scoops
- 2 X Articulated Dump Trucks
- 1 X D6 Bulldozer
- 1 X Tractor and Discs
- 1 X 4T Front End Loader
- 2 X 5T Excavators
- 2 X 20T Excavators
- 1 X 13T Excavators
- 2 X Road Dump Trucks
- 1 X Water Cart
- 1 X 815 Compactor

4. GEOTECHNICAL QUALITY CONTROL

4.1. Site Observations

During the earthworks site visits were typically undertaken several times each week to assess compliance with NZS 4431 and specific design recommendations and specifications.

Site visits were carried out to observe and confirm compliance relating to:

- Adequate topsoil stripping;
- Fill areas prior to the placement of fill materials to ascertain that all mullock and soft inorganic subsoils had been removed;
- Installation of subsoil drains including counterfort drains and gully/underfill drains but excluding road under-channel drains;
- Backfilling of subsoil drains;
- Subsoil drain connections to outlets;
- Retaining wall pile excavations;
- Construction of cantilever pole retaining walls including ground conditions, pile size, spacing and depth;
- Construction of segmental block retaining walls including ground conditions and drainage placement;
- Construction of palisade wall including ground conditions, pile size, spacing and depth; and
- Placement and compaction of engineered fills.

4.2. Compaction Control

Compaction of engineered earth fills was controlled by undrained shear strength measured by hand held shear vane calibrated using the NZGS 2001 method and by air voids as defined by NZS4402.

The criteria for undrained shear strength were a minimum single value of 110 kPa and minimum average of any 10 consecutive tests of 140 kPa.

The criteria for air voids were a maximum single value of 12% and maximum average of any 10 consecutive tests of 10%.

These tests showed on some occasions that the required compaction standards were not being achieved and to the best of our knowledge the failing areas of fill were re-worked as necessary. Subsequent testing confirmed compliance with the specification.

5. EVALUATION OF COMPLETED EARTHWORKS

5.1. Natural Hazards

The appended as-built drawings depict the extents of a series of zones that contain limitations intended to ensure that future building and/ or earthworks on the lots is undertaken in a manner that does not lead to buildings being subject to any of the natural hazards described in section 106 of the Resource Management Act, i.e. erosion, falling debris, subsidence, slippage, and inundation. Consideration of the inundation hazard was outside the scope of CMW's brief and has been assessed by others. The applied zones include:

- Specific Design Zones (retaining) intended to protect the retaining walls from overloading
 at the crest or undermining at the toe that could lead to instability;
- Specific Design Zones (slope) intended to protect building development from long term
 creep effects on or adjacent to steep slopes and to protect the slopes from inappropriate
 loading or undermining.
- Specific Investigation and Design Zone intended to prevent inappropriate building
 development on areas of land within residential lots which do not have suitable stability
 factors of safety in accordance with Auckland Council Code of Practice or which are
 immediately adjacent to the palisade (in-ground) wall that provides appropriate factors of
 safety to the building platform areas.

Full descriptions of the restrictions associated with each of these zones are presented in the Suitability Statement (Appendix A). Additional information is also provided in some of the following sections.

5.2. Land Stability and Erosion Control

On all steep land, surface stability can be compromised by indiscriminate disposal of stormwater onto the ground surface and/ or by removal of vegetation.

Building and landscape designers must ensure that all runoff from solid surfaces is directed into the stormwater system. It is also important that care is paid to the disposal of stormwater during construction so that concentrated discharges (e.g. from unconnected spouting) are not directed towards steep ground.

Wherever practical, existing vegetation and grass cover should be well maintained. Any vegetation cleared beyond the immediate area of building platforms for temporary construction purposes should be replanted or replaced as soon as possible. The roots of an established vegetation cover can serve to bind the surface soils while the foliage can reduce rain infiltration and soil saturation, resulting in better resistance to erosion and shallow slumping.

5.3. Retaining Walls

Cantilever pole and segmental block retaining walls have been constructed in the locations shown on the appended Final Contours and Retaining Walls As-built Plans. These walls reach a maximum height of approximately 1.7 metres and were designed by this consultancy and the construction was observed by this consultancy. Copies of the Producer Statements - Construction Review are provided in Appendix E.

Descriptions of the building and earthworks restrictions within the vicinity of these walls (Specific Design Zones – retaining) are contained in the Suitability Statement in Appendix A. Lots containing these zones include 1 to 7, 9, 10, 12 to 29 and 60 inclusive.

5.4. Palisade Walls

A palisade (in-ground) wall was constructed beneath lots 60 to 65 inclusive to protect building platform areas from potential regression of historic instability. This wall was constructed from 300mm H5 treated timber poles fully embedded into existing ground in 450mm diameter pile holes at 1.5m pile spacing (centre to centre). This wall was designed by the consultancy, presented in technical memorandum referenced AKL2016_0326AC Rev.0 dated 1 July 2016. The extents of this wall are depicted on the Final Contours and Retaining Walls As-built Plans. This consultancy observed construction of this palisade wall. A copy of the Producer Statement – Construction Review is provided in Appendix E.

5.5. Fill Induced Settlement

Based on our experience with fills within the geological setting, the works undertaken to prepare the gully areas for filling, including undercuts to rock and underfill drainage measures together with the elapsed time since the majority of the deeper fills were placed, we consider that the remaining post-construction settlements will be within code limits.

5.6. Service Line Trenches

As part of the civil works, stormwater services were trenched throughout the development as shown on the appended Stormwater Reticulation As-built Plans. Sanitary sewer services within this subdivision are based on Pressure Wastewater Collection (PWC) systems, which are installed in the common services trenches outside of the residential lots.

As is normal on all subdivisions, building developments involving foundations within a 45 degree zone of influence from pipe inverts will require engineering input. The Auckland Council drawing referenced SW22 provided in Appendix B extracted from Chapter 4 of the Auckland Council Code of Practice for Land development and Subdivision depicts their requirements for stormwater pipes. Lots 1, 3, 4, 6 to 9, 17, 18, 20, 22, 23, 25, 26, 28 to 33, 52 and 54 to 64 inclusive are known to have service trenches within the lots as shown on the appended Stormwater Reticulation As-built Plans. The resulting restrictions are presented in the Suitability Statement below.

5.7. Subsoil Drains

The appended Cut Fill As-built Plans shows the positions of subsoils drains which were constructed in the natural ground during the earthworks operations. The drains were installed to help control groundwater levels and are extended to formed outlets within the coastal margins of the subdivision. The ongoing operation of these drains is important to the overall stability conditions of the site.

Typical depths for these drains are depicted on the as-built plans and are generally over 2.5m below finished ground levels. Accordingly, they are predominantly beyond the depths of anticipated foundations.

Descriptions of the restrictions are contained in the appended Suitability Statement.

5.8. Road Subgrades

Penetration resistance testing was carried out on the road subgrades during construction and the results of this testing were forwarded to Cato Bolam Consultants Limited for pavement remedial design. Where soft ground with low equivalent CBR values was identified it was generally undercut and replaced with engineered fill. These undercut areas are depicted on the appended Road As-built Plans. All road subgrade areas were subsequently lime/ cement stabilised to achieve appropriate CBR values.

Benkelman Beam testing of the base course was carried out by Road Test Limited on each road and those results were also forwarded to Cato Bolam Consultants.

5.9. Design of Shallow Foundations

5.9.1. Bearing Capacity

Once bulk earthworks and top-soiling of the building platforms had been completed, our staff drilled hand auger boreholes on platforms in natural ground to determine representative finished ground conditions and hence evaluate likely foundation options for future building development. Our assessments of bearing capacity for the design of shallow foundations on each building platform are contained in the appended Suitability Statement.

At current subgrade levels all lots have been assessed as having a geotechnical ultimate bearing capacity of 300 kPa within the influence of conventional shallow residential building foundation loads.

If higher geotechnical ultimate bearing capacities are required, further specific site investigation and design of foundations should be carried out prior to Building Consent application.

5.9.2. Foundation Settlements

At the bearing pressures specified above and subject to the design requirements for soil expansiveness provided below, differential settlement of shallow foundations for buildings designed in accordance with NZS 3604 (including the 600mm subfloor fill depth limit) should be within code limits.

5.9.3. Soil Expansiveness Classification

Four sets of soil tests were carried out on samples taken from likely foundation level on lots within these stages of the development.

Testing was carried out in accordance with NZS 4402, "Methods of Testing Soils for Civil Engineering Purposes" test 2.2 and 2.6 and were used in conjunction with visual-tactile assessment of the site soils to determine expansive site Classes as defined in AS 2870, "Residential Slabs and Footings – Construction". All test results are appended.

On this basis we have assessed the AS 2870 Site Class for all lots these stages of the development to be M (moderate). Details of foundation options for this Class are contained in the appended Suitability Statement.

In recent years in Auckland, there have been examples of concrete floors and/ or foundations that have been poured on dry, desiccated subgrades in summer months on expansive soils and have undergone heaving and cracking once the soil moisture contents have returned to higher levels. Foundation contractors need to be made aware of this issue and the need to maintain appropriate moisture contents in the footings and building platform subgrade between the time of excavation and the pouring of concrete.

Remedial actions that may be appropriate include platform protection with a hard fill layer, pouring of a blinding layer of concrete in footing bases and soaking of the building platform with sprinklers for an extended period.

Home owners need to be aware that the planting of high water demand plants where their roots may extend close to footings can also cause settlement damage.

5.10. Topsoil Depths

Topsoil depths have been checked by the drilling of a borehole in the approximate centre of the building platform on each lot. The results are considered indicative for each lot, but may be subject to variations. Topsoil depths are between 50 and 300mm on these stages of the development.

Site specific findings are contained in the appended Suitability Statement Summary (Appendix A). However, it is possible that further levelling works have been undertaken since our investigations and accordingly, we strongly recommend that lot purchasers complete their own checks of topsoil depths.

6. CLOSURE

The appended Statement of Professional Opinion is provided to the Auckland Council and Cabra Properties Limited for their purposes alone on the express condition that it will not be relied upon by any other person. It is important that prospective purchasers satisfy themselves as to any specific conditions pertaining to their particular land interest.

Although regular site visits have been undertaken for observation, for providing guidance and instruction and for testing purposes, the geotechnical services scope did not include full time site presence. To this end, our appended Suitability Statement also relies on the Contractors' work practices and assumes that when we have not been present to observe the work, it has been completed to high standards and in accordance with the drawings, instructions and consent conditions provided to them.

Similarly it assumes that all as-built information and other details provided to the Client and/or CMW by other members of the project team are accurate and correct in all respects.

For and on behalf of CMW Geosciences

Prepared by:

Greg Snook

Senior Engineering Geologist

Reviewed and Approved by:

Richard Knowles

Ry Knowles

Principal Geotechnical Engineer, CPEng

Appendix A

Statement of Professional Opinion as to the Suitability of Land for Building Development

STATEMENT OF PROFESSIONAL OPINION AS TO THE SUITABILITY OF LAND FOR BUILDING DEVELOPMENT

I, R.J. Knowles, of CMW Geosciences, Auckland, hereby confirm that:

- 1. As a Chartered Professional Engineer experienced in the field of geotechnical engineering, I am a Geo-professional as defined in section 1.2.2 of NZS 4404 and was retained by the Developer as the Geotechnical Engineer on Stages 1 and 2 of the Deacon Point Development.
- The extent of preliminary investigations carried out to date are described in the Geotechnical Investigation Report referenced AKL2016_0326AB Rev.2, dated 13 May 2016 prepared by this consultancy. The conclusions and recommendations of those documents have been reevaluated in the preparation of this report. The results of all tests carried out are also appended.
- 3. In my professional opinion, not to be construed as a guarantee, I consider that:
 - (a) The earth fills shown on the appended Cut Fill As-built Plan have been placed in compliance with NZS 4431, the Auckland Council District Plans (Rodney Section) and related documents.
 - (b) The completed earthworks give due regard to land slope and foundation stability considerations on the building platform areas, but as shown on the appended Specific Design Zone Restriction plans, areas on all lots have gradients steeper than 1(v) in 4 (h) or are adjacent to land having such gradients. Accordingly, restrictions incorporating Specific Design Zones (Slope) have been applied on Lots 1, 3 to 7, 10 to 12 and 55 to 59 inclusive as depicted on the Specific Design Restriction Zone plans.

No building construction <u>and</u> no earthworks (i.e. cut or fills of any depth) should take place within the designated **Specific Design Zone (Slope)** areas unless endorsed by a Chartered Professional Engineer experienced in geomechanics and familiar with the contents of this report. The endorsement will need to consider the implications of the proposals on both global stability conditions and soil creep on the building buildings, the interaction with service pipes and associated trench backfills, control of surface water, construction sequencing, timing and temporary support requirements construction of all earthworks, foundations and retaining walls and if necessary, comment on what aspects require engineering inspections and certification.

This limitation also applies to long term landscaping works, including any proposed minor cuts either on or near batter toes to be retained by new landscaping walls that might not normally require engineering, and to landscaping fills on or immediately above the batter slopes.

(c) Specific Investigation and Design Zone areas defined on Lots 60 to 65 inclusive have been applied to the seaward side of the palisade (in-ground) wall and within 2 metres of this wall. The wall has been designed to protect the upslope areas from potential long term regression of instability in the coastal margin.

No building construction and no earthworks may take place in these areas unless <u>further specific investigations and design of all future earthworks</u>, <u>geotechnical remediation and foundation design</u> is endorsed by a Chartered Professional Engineer experienced in geomechanics and familiar with the contents of this report, the previous investigation reports and the existing ground remediation works (palisade wall) constructed within these lots.

The endorsement will need to consider the implications of the proposals on the global stability conditions, soil creep effects onto building areas and assessment of vacation potential downslope of existing or proposed remediation works, impact on the existing palisade wall, control of surface water, construction sequencing, timing and temporary support, specifications and requirements for remedial works and for earthworks, construction and foundation works and if necessary document required inspection and certification of such works.

- (d) Specific Design Zone (Retaining) have been applied on Lots 1 to 7, 9, 10, 12 to 29 and 60 inclusive for the protection of the function of the retaining walls. No building construction and no earthworks (i.e. cut or fills of any depth) should take place within the designated Specific Design Zone (Retaining) areas unless endorsed by a Chartered Professional Engineer experienced in geomechanics and familiar with the contents of this report. The endorsement will need to consider the stability implications of the earthworks and building proposals on the retaining walls.
- (e) The function of the subsoil drains installed beneath Lots 1, 3, 8 to 11, 19 to 23, 59 and 60 inclusive must not be impaired by any building development or landscaping works. Any bored or driven piles must be positioned to avoid damaging the draincoils. Where any subsoil drain is intercepted by building works, it must be reinstated under the direction of a Chartered Professional Engineer to ensure the integrity of the subsoil drainage system.
- (f) A geotechnical ultimate bearing capacity of 300 kPa may be assumed for shallow foundation design on the building platforms of all Lots.
 - If for any reason higher geotechnical bearing capacities are required, further specific site investigation and design of foundations should be carried out prior to Building Consent application.
- (g) The expansive site Class for all lots has been assessed as AS2870 Class M (Moderate). We recommend that building designers note on the Building Consent drawings the need to maintain appropriate moisture levels across building subgrades and in footing excavations (as described in Section 5.9.3 of the Geotechnical Completion Report) for reference by foundation contractors.
- (h) The backfilling and compaction of the storm water and sanitary sewer trenches on this subdivision has been carried out to appropriate standards having regard for the prevailing ground conditions and associated compaction induced pipe loadings.
 - However, no building development should take place within the 45 degree zone of influence of drain inverts unless endorsed by specific design and by construction inspections undertaken by a Chartered Professional Engineer experienced in geomechanics to ensure that lateral stability and differential settlement issues are addressed and that building loads are transferred beyond the influence of the pipe and trench backfill. A copy of drawing SW22 extracted from Chapter 4 of the Auckland Council Code of Practice for Land development and Subdivision this document is provided in Appendix B for clarification. Lots 1, 3, 4, 6 to 9, 17, 18, 20, 22, 23, 25, 26, 28 to 33, 52 and 54 to 64 are affected by these service lines.
- (i) Subject to the geotechnical limitations, restrictions and recommendations contained in clauses 3(b), 3(c), 3(d), 3(e) 3(f), 3(g) and 3(h) above:

- (i) The filled and natural ground is generally suitable for residential buildings constructed in accordance with NZS 3604 and the requirements of AS2870 for the appropriate expansive soil class.
- (ii) Where shallow foundations are appropriate, design may be carried out in accordance with AS 2870 (Class M) or alternately, a specific foundation and structural design may be undertaken by a Chartered Professional Engineer.
- 4. Road subgrades have been formed with appropriate regard for slope stability and settlement risks.

The following table summarises the conditions on each of each residential lots.

For and on behalf of CMW Geosciences

Richard Knowles

ly knowles

Principal Geotechnical Engineer, CPEng

GCR Summary Table

			, K Suli		I able			
Condition	Specific Design Zone (slope)	Specific Investigation and Design Zone	Specific Design Zone (retaining)	Subsoil Drains Present	Geotechnical Ultimate Bearing Capacity (kPa)	AS2870 Expansive Class	Service Lines Restrictions	Indicative Topsoil Depth (mm)
GCR SOPO Clause	3(b)	3(c)	3(d)	3(e)	3(f)	3(g)	3(h)	
Lot number								
1	•		•	•	300	М	•	300
2			•		300	М		250
3	•		•	•	300	М	•	200
4	•		•		300	М	•	200
5	•		•		300	М		200
6	•		•		300	М	•	200
7	•		•		300	М	•	200
8				•	300	М	•	200
9			•	•	300	М	•	250
10	•		•	•	300	М		250
11	•			•	300	M		300
12	•		•		300	M		300
13			•		300	M		250
14			•		300	M		250
15			•		300	М		200
16			•		300	М		350
17			•		300	М	•	200
18			•		300	М	•	300
19			•	•	300	М		200
20			•	•	300	М	•	200

Condition	Specific Design Zone (slope)	Specific Investigation and Design Zone	Specific Design Zone (retaining)	Subsoil Drains Present	Geotechnical Ultimate Bearing Capacity (kPa)	AS2870 Expansive Class	Service Lines Restrictions	Indicative Topsoil Depth (mm)
GCR SOPO Clause	3(b)	3(c)	3(d)	3(e)	3(f)	3(g)	3(h)	
Lot number					Г			
21			•	•	300	М		250
22			•	•	300	M	•	200
23			•	•	300	М	•	250
24			•		300	M		300
25			•		300	M	•	200
26			•		300	M	•	250
27			•		300	M		100
28			•		300	М	•	200
29			•		300	M	•	200
30					300	M	•	150
31					300	М	•	200
32					300	М	•	200
33					300	М	•	300
34					300	М		200
52					300	М	•	300
53					300	М		250
54					300	М	•	250
55	•				300	М	•	300
56	•				300	М	•	300
57	•				300	М	•	200
58	•				300	М	•	300

Condition	Specific Design Zone (slope)	Specific Investigation and Design Zone	Specific Design Zone (retaining)	Subsoil Drains Present	Geotechnical Ultimate Bearing Capacity (kPa)	AS2870 Expansive Class	Service Lines Restrictions	Indicative Topsoil Depth (mm)
GCR SOPO Clause	3(b)	3(c)	3(d)	3(e)	3(f)	3(g)	3(h)	
Lot number								
59	•		•	•	300	М	•	200
60		•	•	•	300	M	•	250
61		•			300	М	•	300
62		•			300	М	•	250
63		•			300	М	•	300
64		•			300	М	•	300
65		•			300	М	•	300

Appendix B

Drawings

Title	Reference No.	Date
Cover Sheet	34147 Sheet E000	10 September 2017
Final Contours and Retaining Walls As-Built Plans (6 Sheets)	34147 Sheets E600 to E605	10 September 2017
Cut Fill As-Built Plans (3 Sheets)	34147 Sheets E606 to E608	10 September 2017
Roading As-Built Plans (4 Sheets)	34147 Sheets E609 to E612	10 September 2017
Wastewater Reticulation As-Built Plans (5 Sheets)	34147 Sheets E613 to E617	10 September 2017
Stormwater Reticulation As-Built Plans (6 Sheets)	34147 Sheets E618 to E623	10 September 2017
Water Reticulation As-Built Plans (3 Sheets)	34147 Sheets E624 to E626	10 September 2017
Esplanade Planting As-Built Plans (3 Sheets)	34147 Sheets E627 to E629	10 September 2017
Retaining Wall Specific Design Zone Plans (3 Sheets)	34147 Sheets E631 to E633	10 September 2017
Specific Design Zone Restriction Plan	34147 Sheet E634	10 September 2017
Auckland Council Stormwater Pipe and Manhole Construction Clearance Requirements	SW22	30 September 2013

Cabra Developments Ltd Decon Point Stages 1 & 2 Dinning Road, Riverhead

E630

E631

E632

E633

E634

Stormwater Drainage Zone of Influence Plan

Retaining Wall Specific Design Plan Sheet 1 of 3

Retaining Wall Specific Design Plan Sheet 1 of 3

Retaining Wall Specific Design Plan Sheet 1 of 3

Specific Investigation & Slope Design Zone Plan

AS BUILT PLAN SET - 34147 Stages 1 & 2

E000	COVER SHEET
E600	Final Contours & Retaining Walls - Sheet 1 of 6
E601	Final Contours & Retaining Walls - Sheet 2 of 6
E602	Final Contours & Retaining Walls - Sheet 3 of 6
E603	Final Contours & Retaining Walls - Sheet 4 of 6
E604	Final Contours & Retaining Walls - Sheet 5 of 6
E605	Final Contours & Retaining Walls - Sheet 6 of 6
E606	Cut Fill - Sheet 1 of 3
E607	Cut Fill - Sheet 2 of 3
E608	Cut Fill - Sheet 3 of 3
E609	Roading - Sheet 1 of 4
E610	Roading - Sheet 2 of 4
E611	Roading - Sheet 3 of 4
E612	Roading - Sheet 4 of 4
E613	Wastewater Reticulation - Sheet 1 of 5
E614	Wastewater Reticulation - Sheet 2 of 5
E615	Wastewater Reticulation - Sheet 3 of 5
E616	Wastewater Reticulation - Sheet 4 of 5
E617	Wastewater Reticulation - Sheet 5 of 5
E618	Stormwater Reticulation - Sheet 1 of 6
E619	Stormwater Reticulation - Sheet 2 of 6
E620	Stormwater Reticulation - Sheet 3 of 6
E621	Stormwater Reticulation - Sheet 4 of 6
E622	Stormwater Reticulation - Sheet 5 of 6
E623	Stormwater Reticulation - Sheet 6 of 6
E624	Water Reticulation - Sheet 1 of 3
E625	Water Reticulation - Sheet 2 of 3
E626	Water Reticulation - Sheet 3 of 3
E627	Esplanade Planting - Sheet 1 of 3
E628	Esplanade Planting - Sheet 2 of 3
E629	Esplanade Planting - Sheet 3 of 3

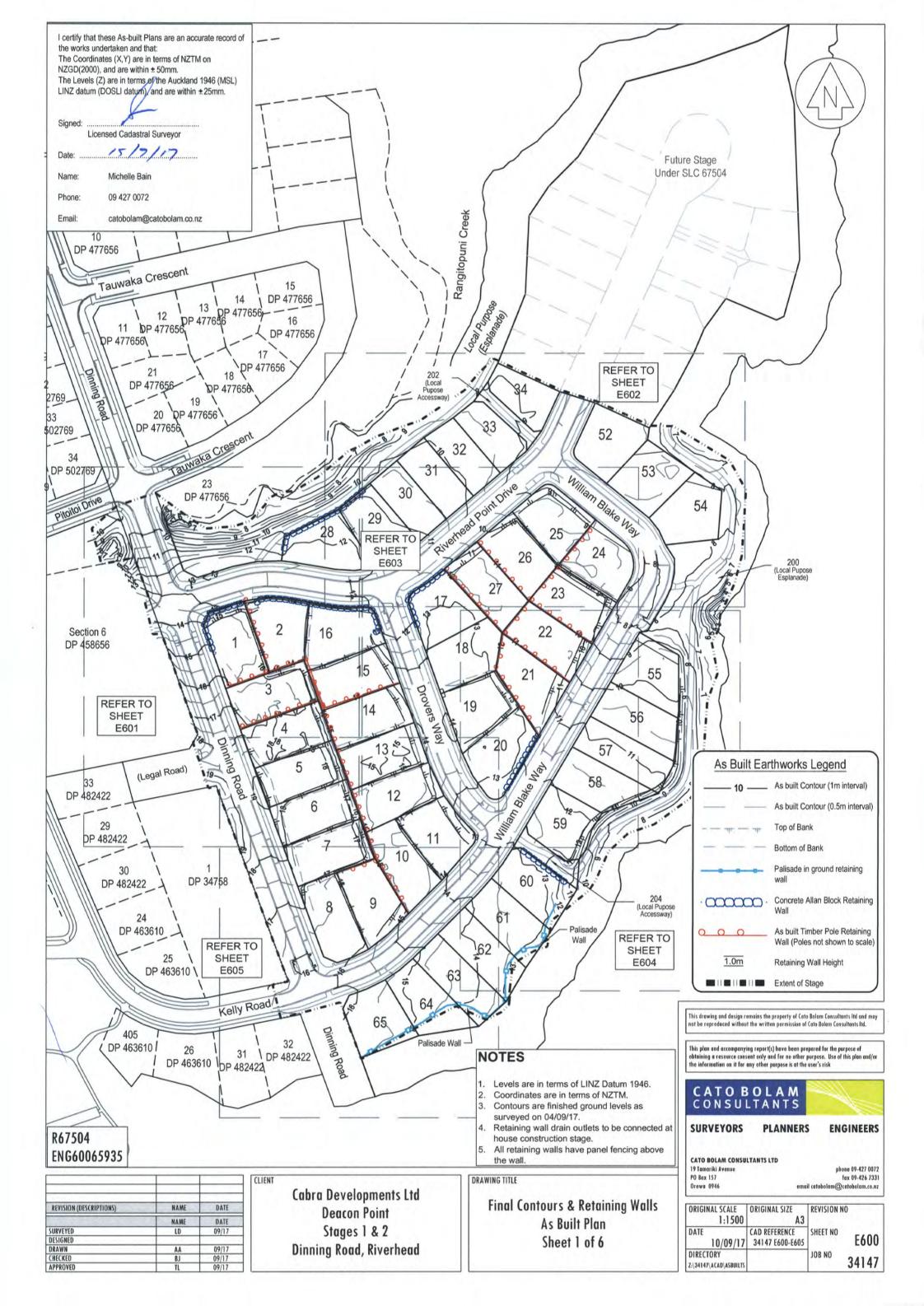
STAGING STAGE 1 STAGE 2 STAGE 3 Kaipara Portage Road

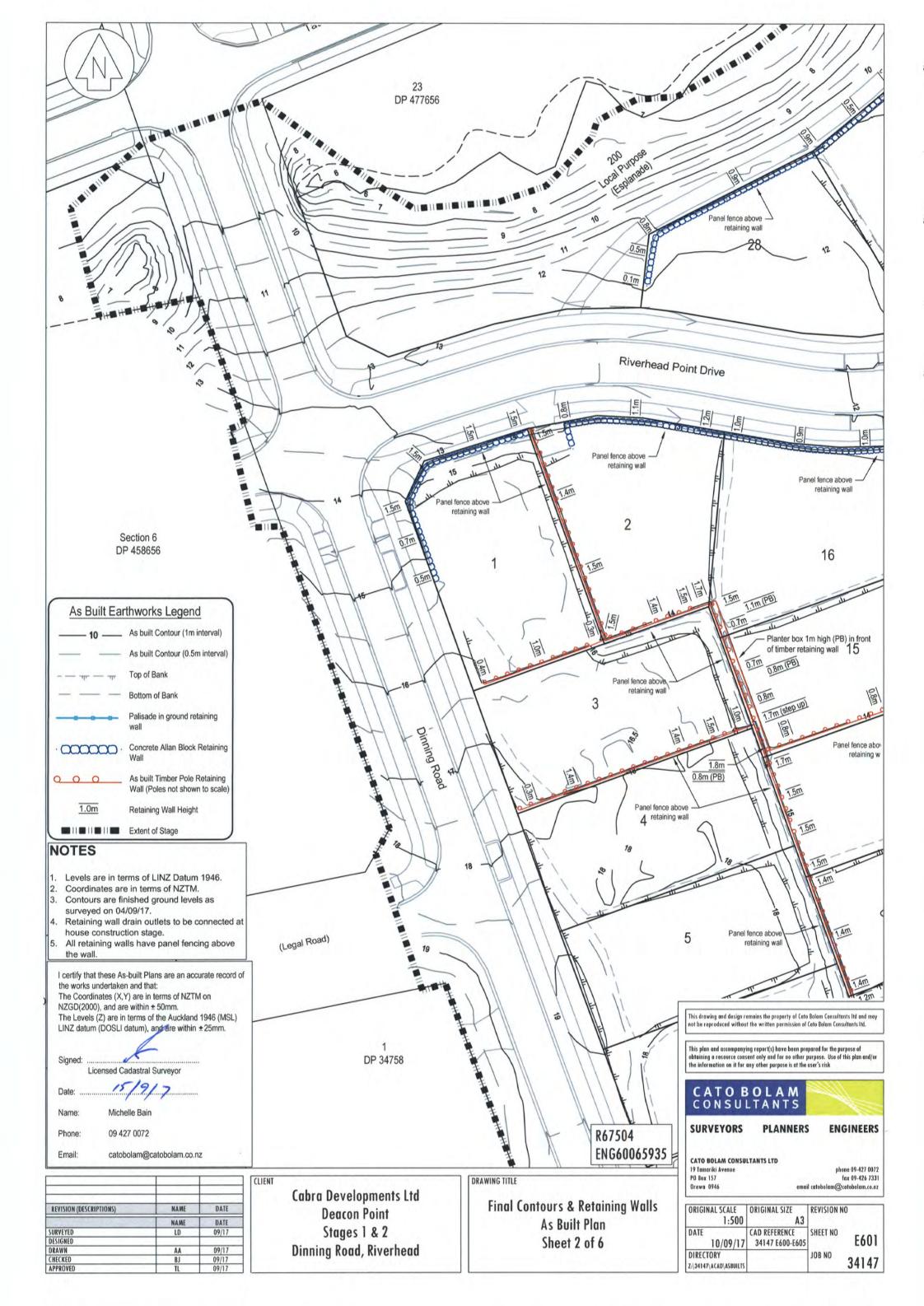
LOCATION DIAGRAM

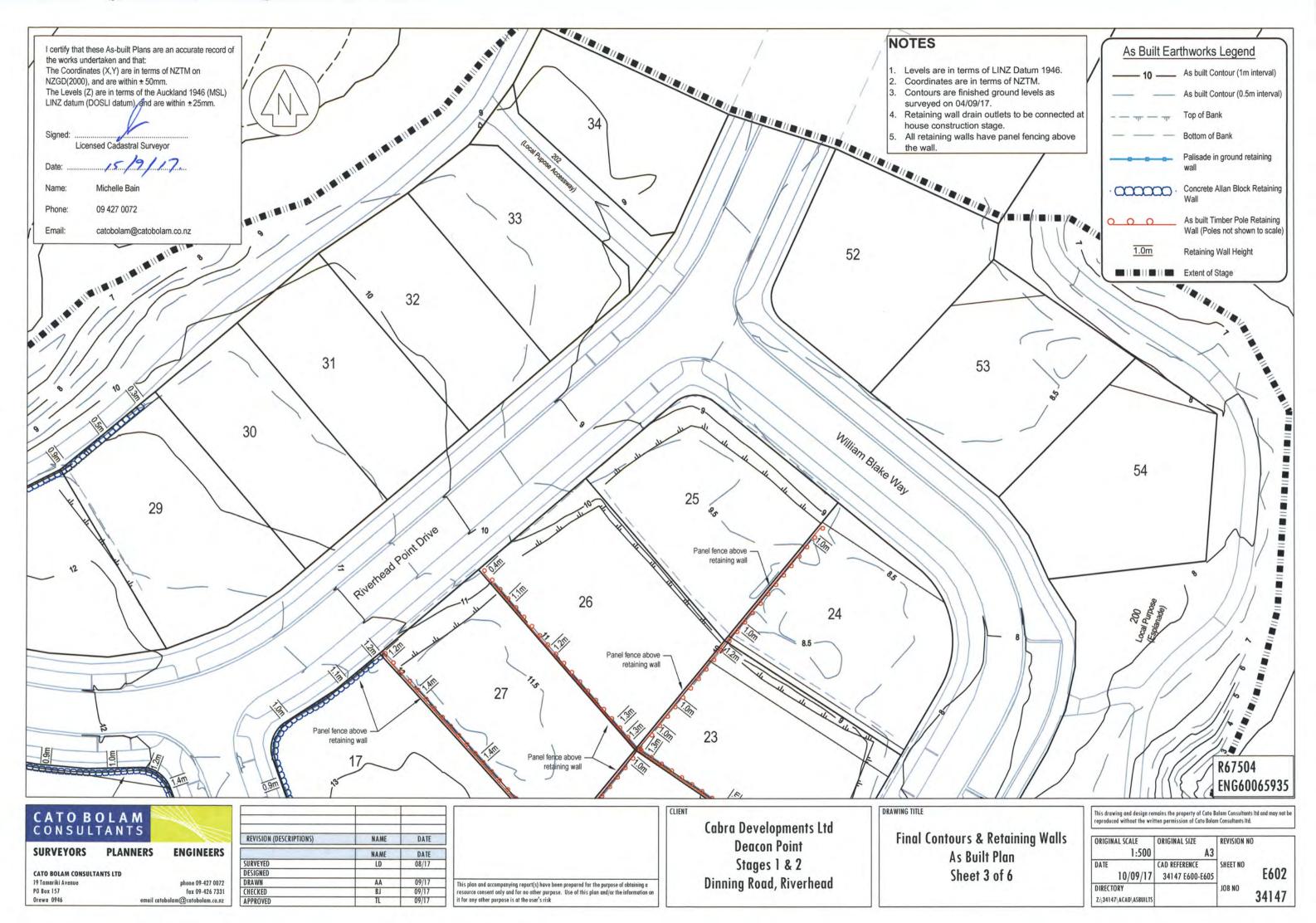
Scale 1:5,000

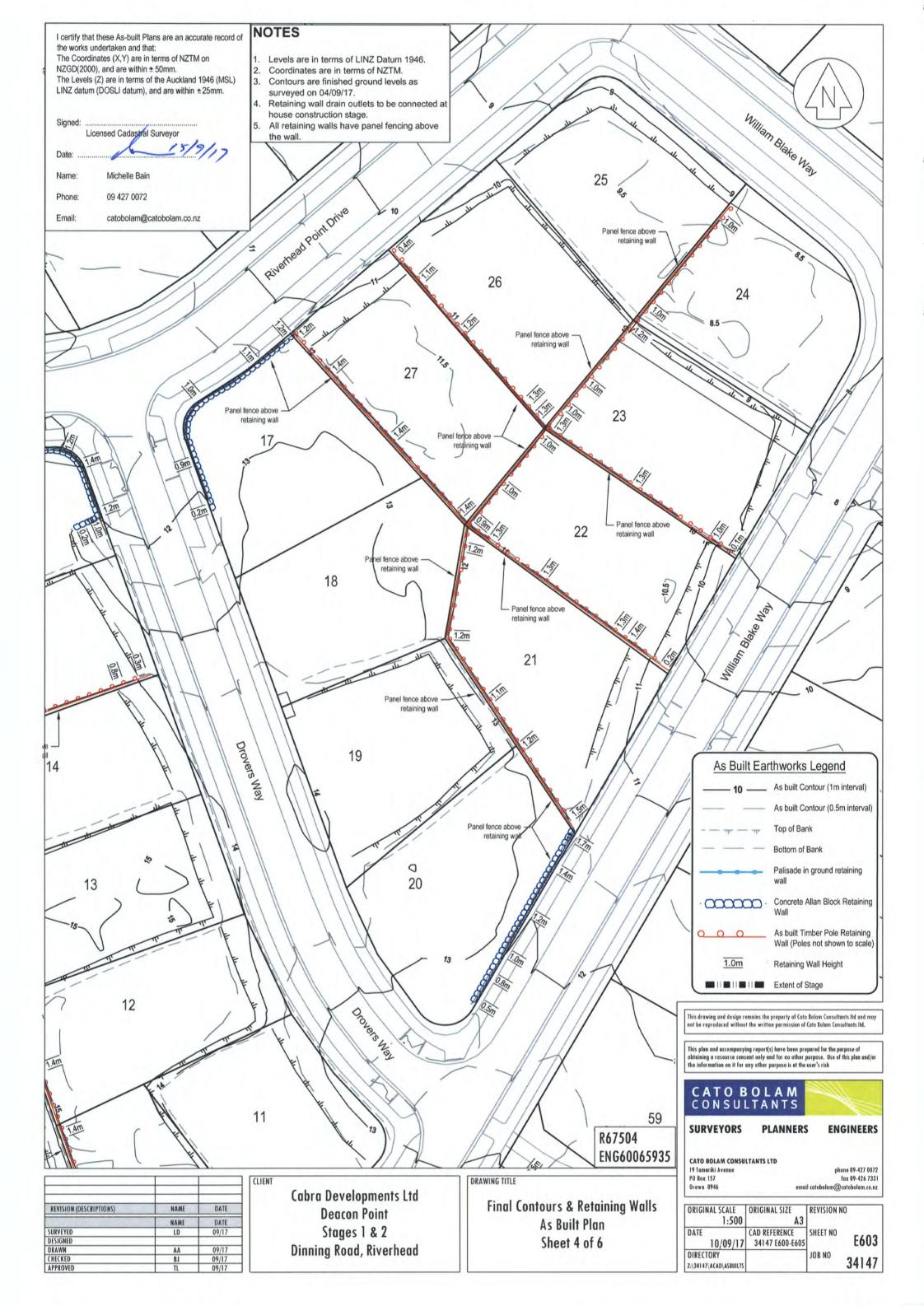
R67504

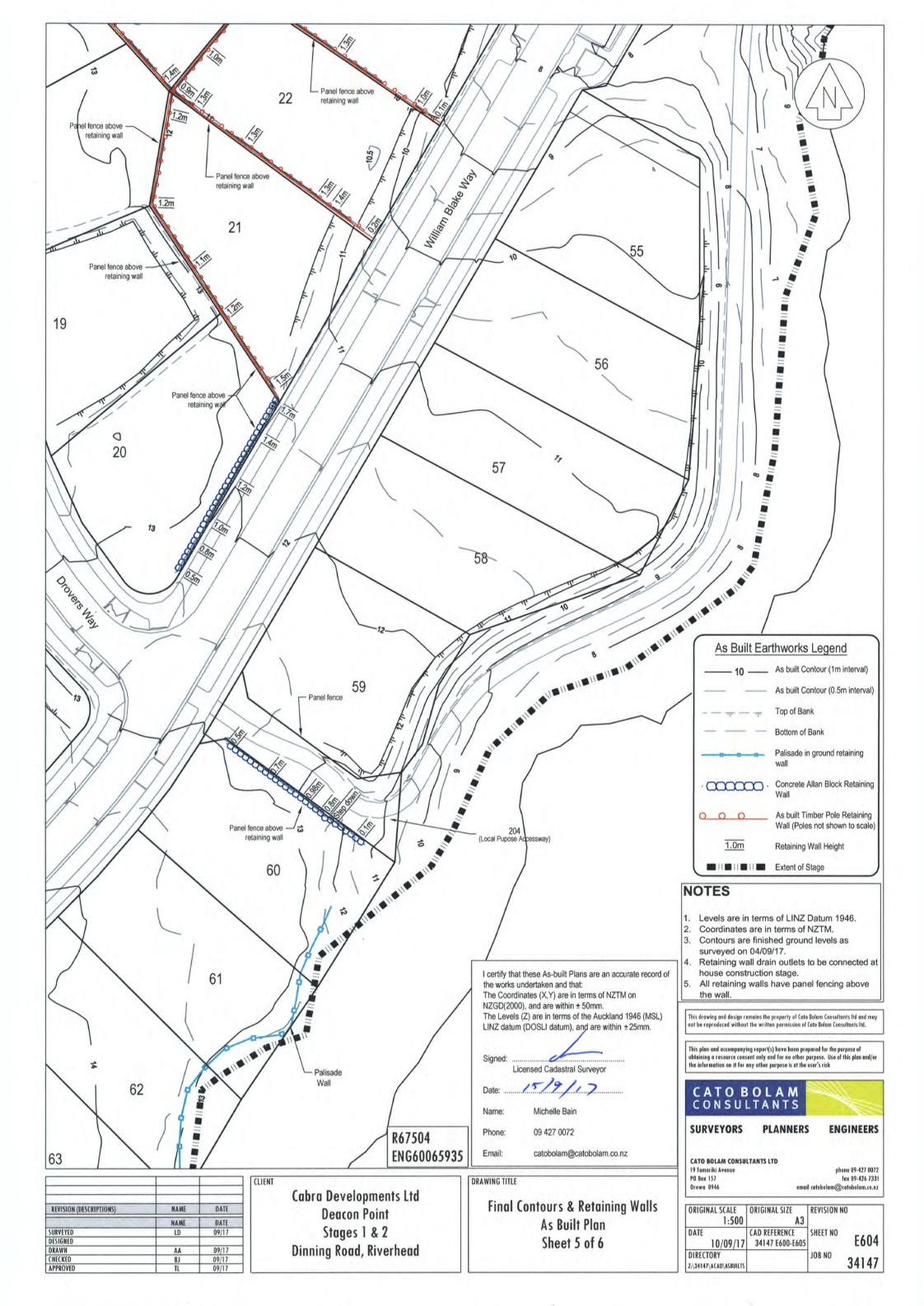
ENG60065935

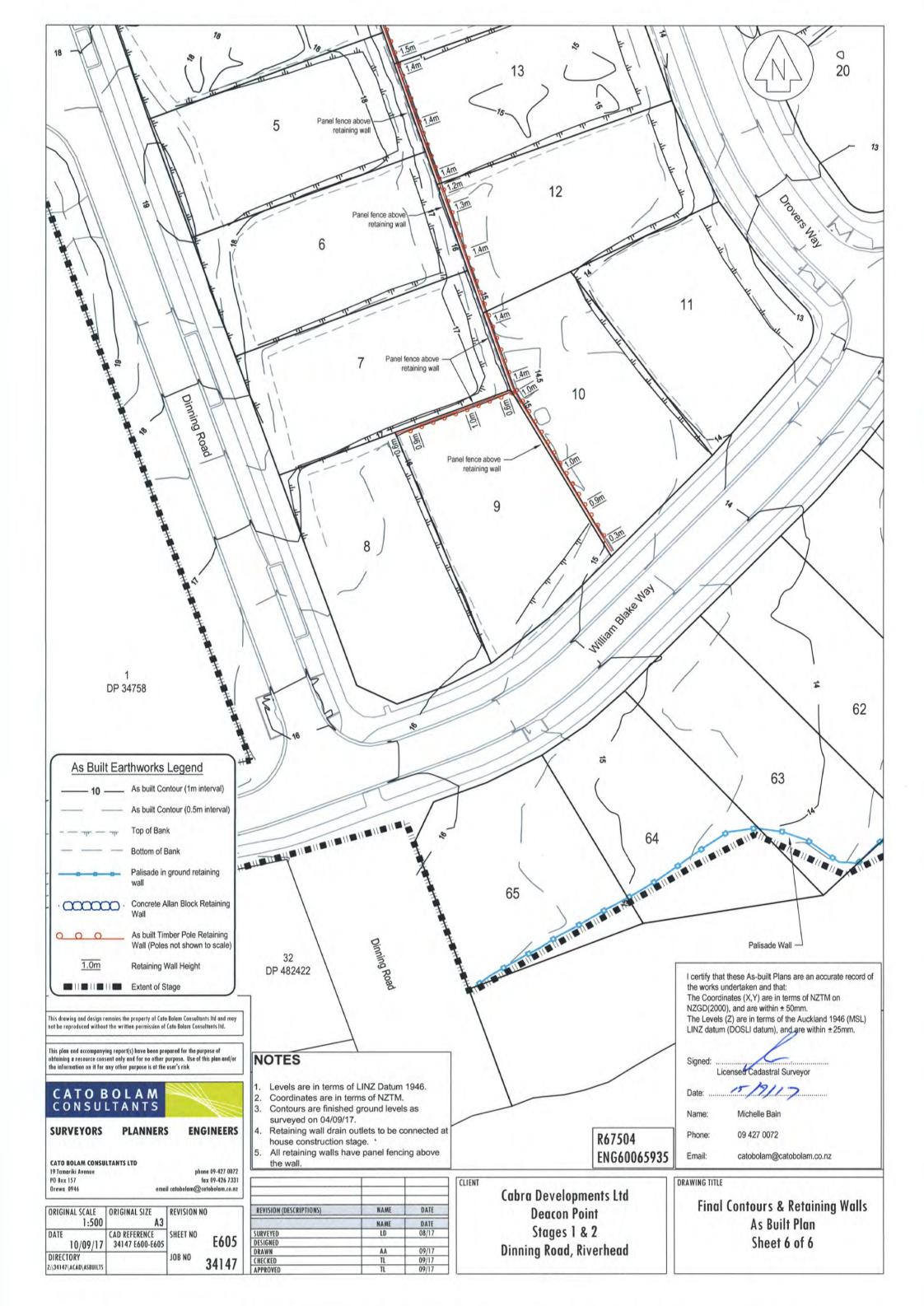

SURVEYORS

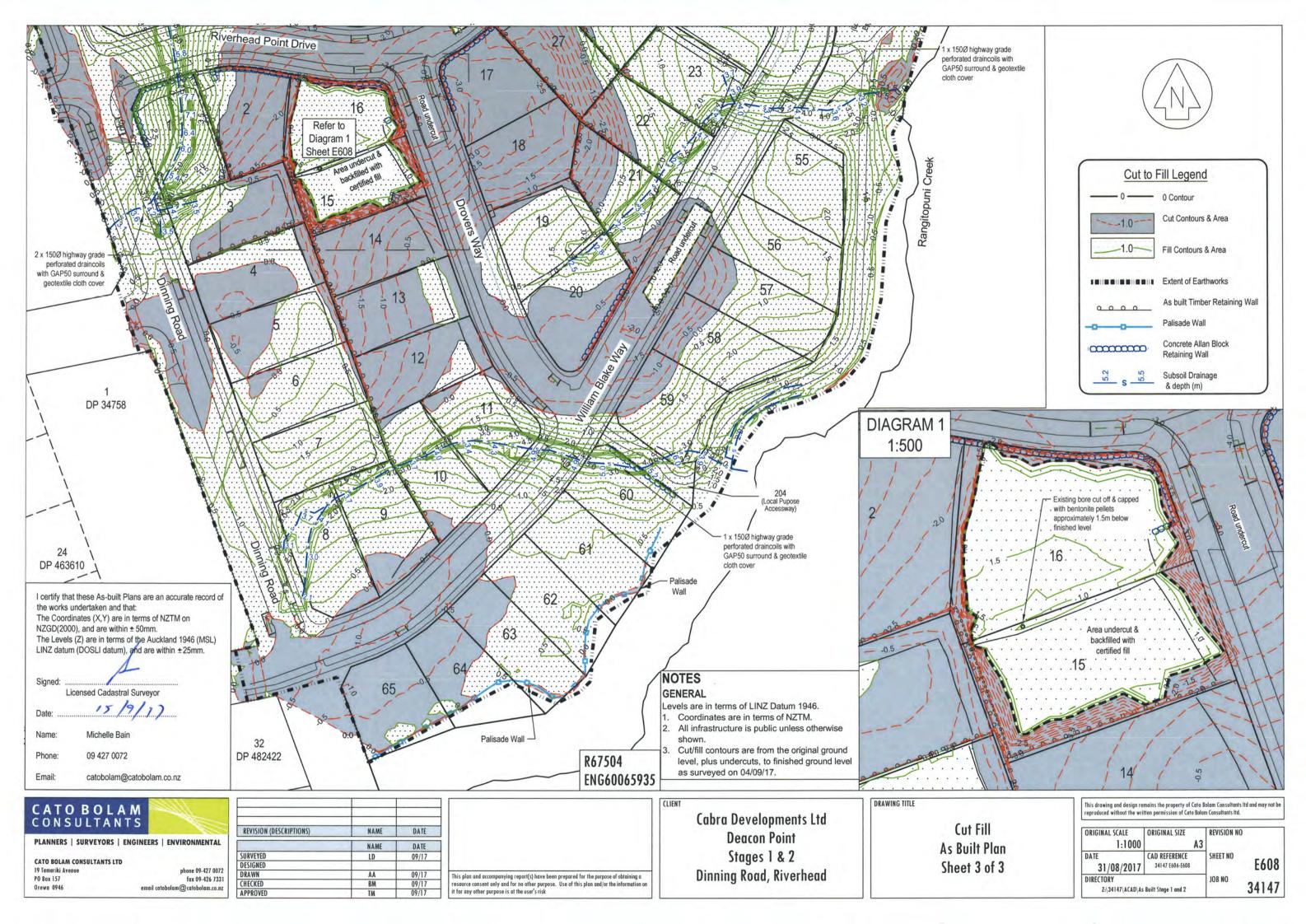

PLANNERS

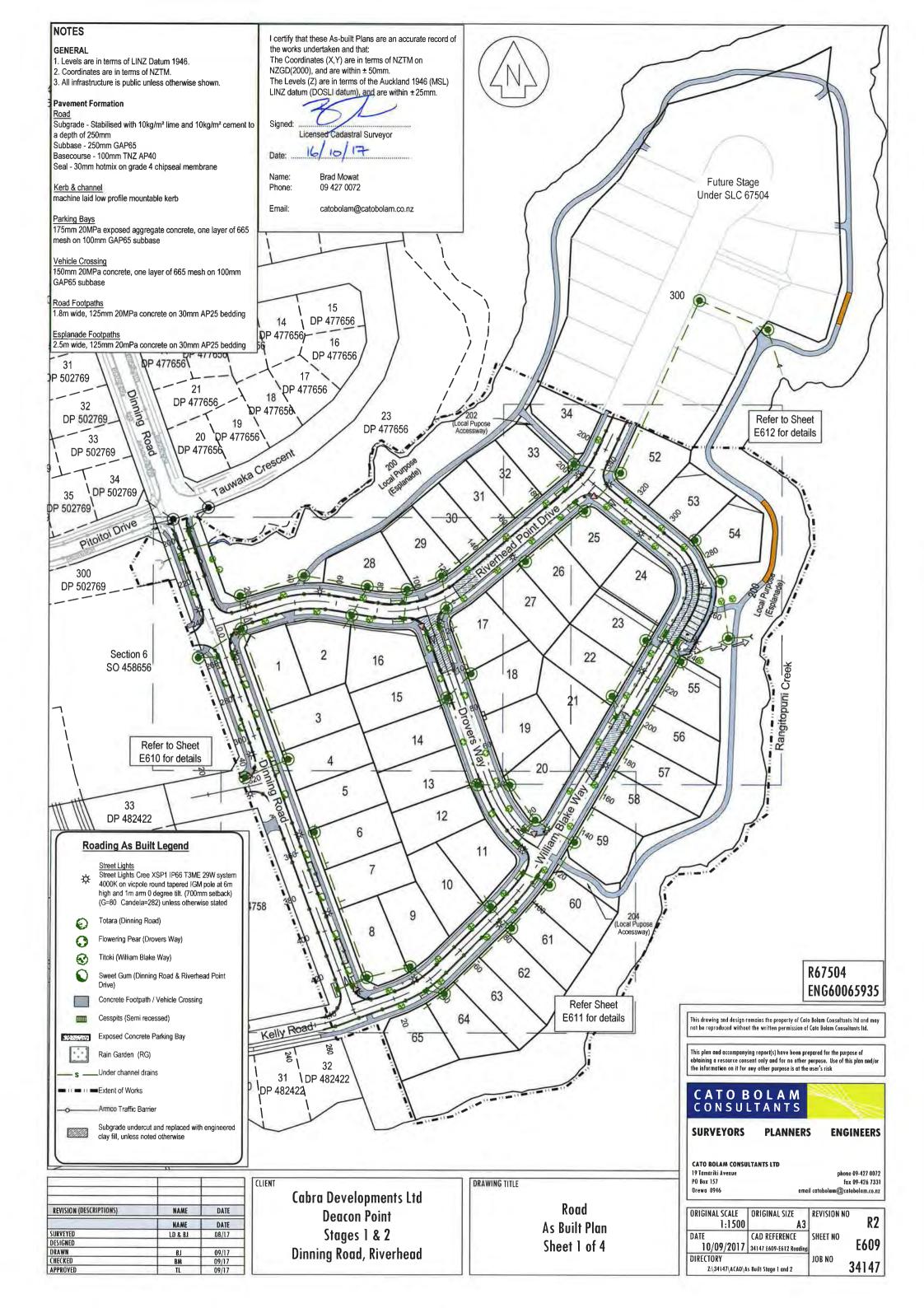

CATO BOLAM CONSULTANTS LTD

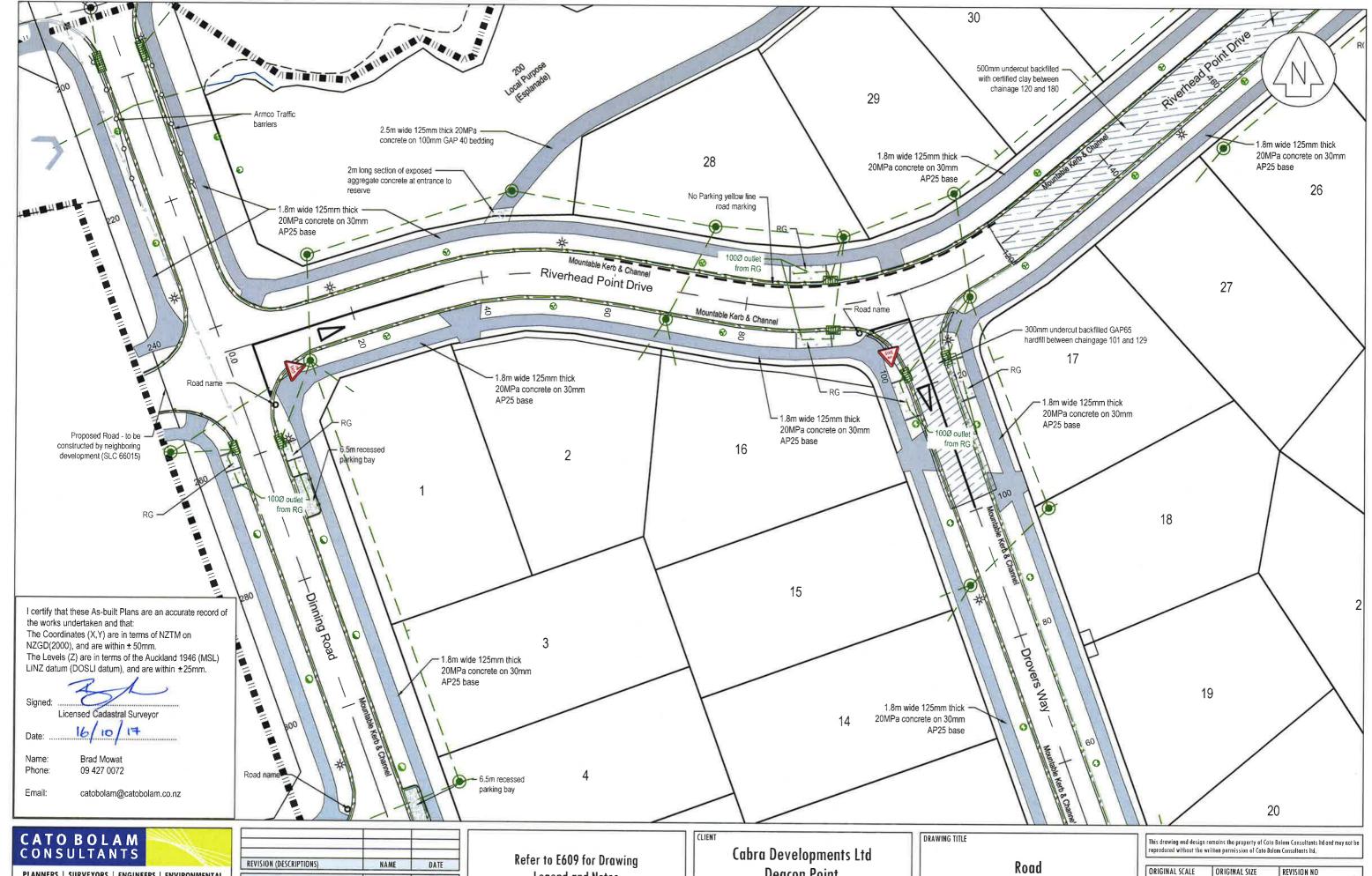

19 Tamariki Avenue PO Box 157


phone 09-427 0072 fax 09-426 7331 email catobolam@catobolam.co.nz









PLANNERS | SURVEYORS | ENGINEERS | ENVIRONMENTAL

CATO BOLAM CONSULTANTS LTD

19 Tamariki Avenue PO Box 157 fax 09-426 7331 Orewa 0946 email catobolam@catobolam.co.nz

REVISION (DESCRIPTIONS)	NAME	DATE
	NAME	DATE
SURVEYED	LD & BJ	08/17
DESIGNED		
DRAWN	BJ	09/17
CHECKED	BM	09/17
APPROVED	ΤĽ	09/17


Refer to E609 for Drawing Legend and Notes

This plan and accompanying report(s) have been prepared for the purpose of obtaining a resource consent only and for no other purpose. Use of this plan and/or the information of it for any other purpose is at the user's risk

Deacon Point Stages 1 & 2 Dinning Road, Riverhead

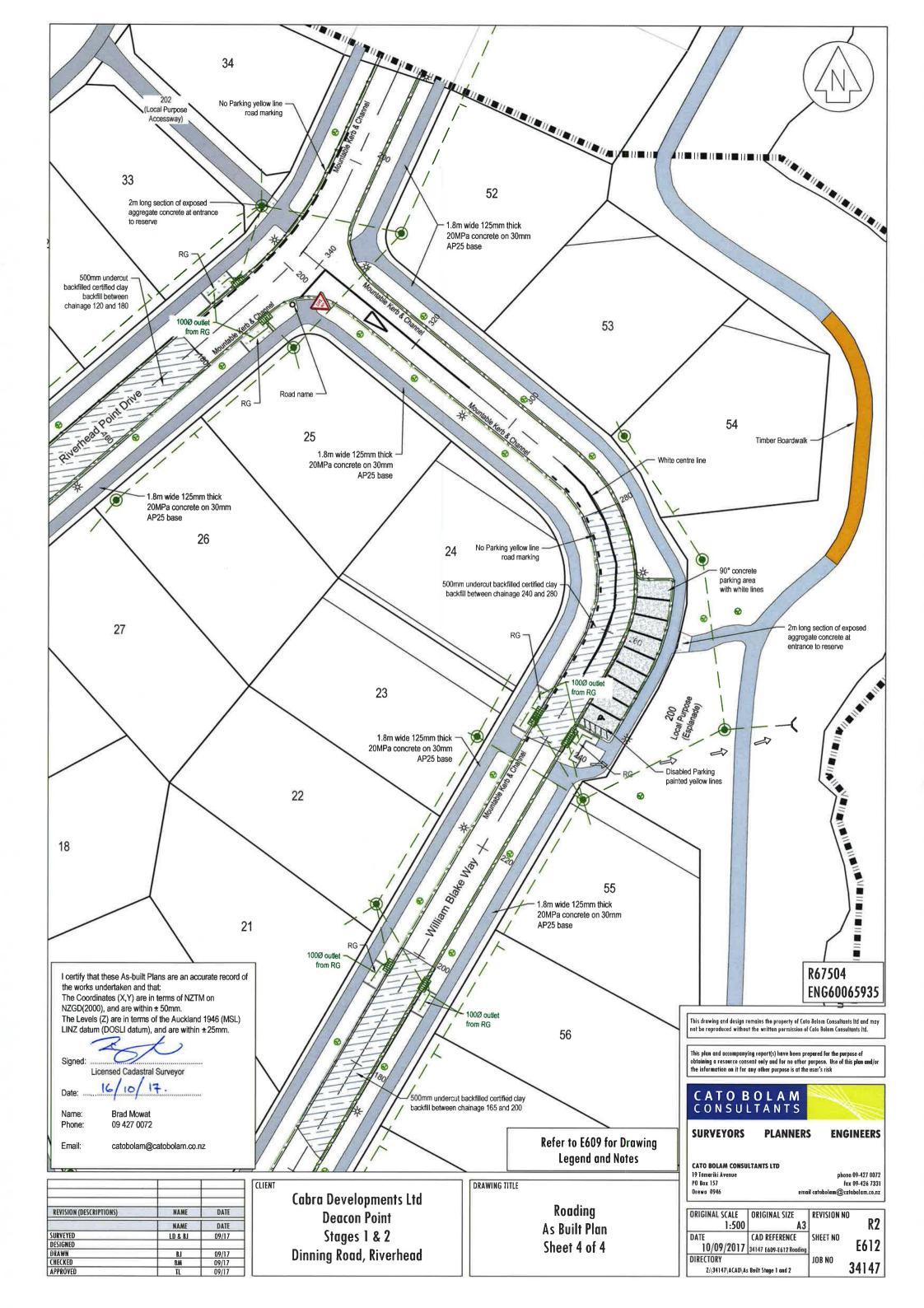
Road As Built Plan Sheet 2 of 4

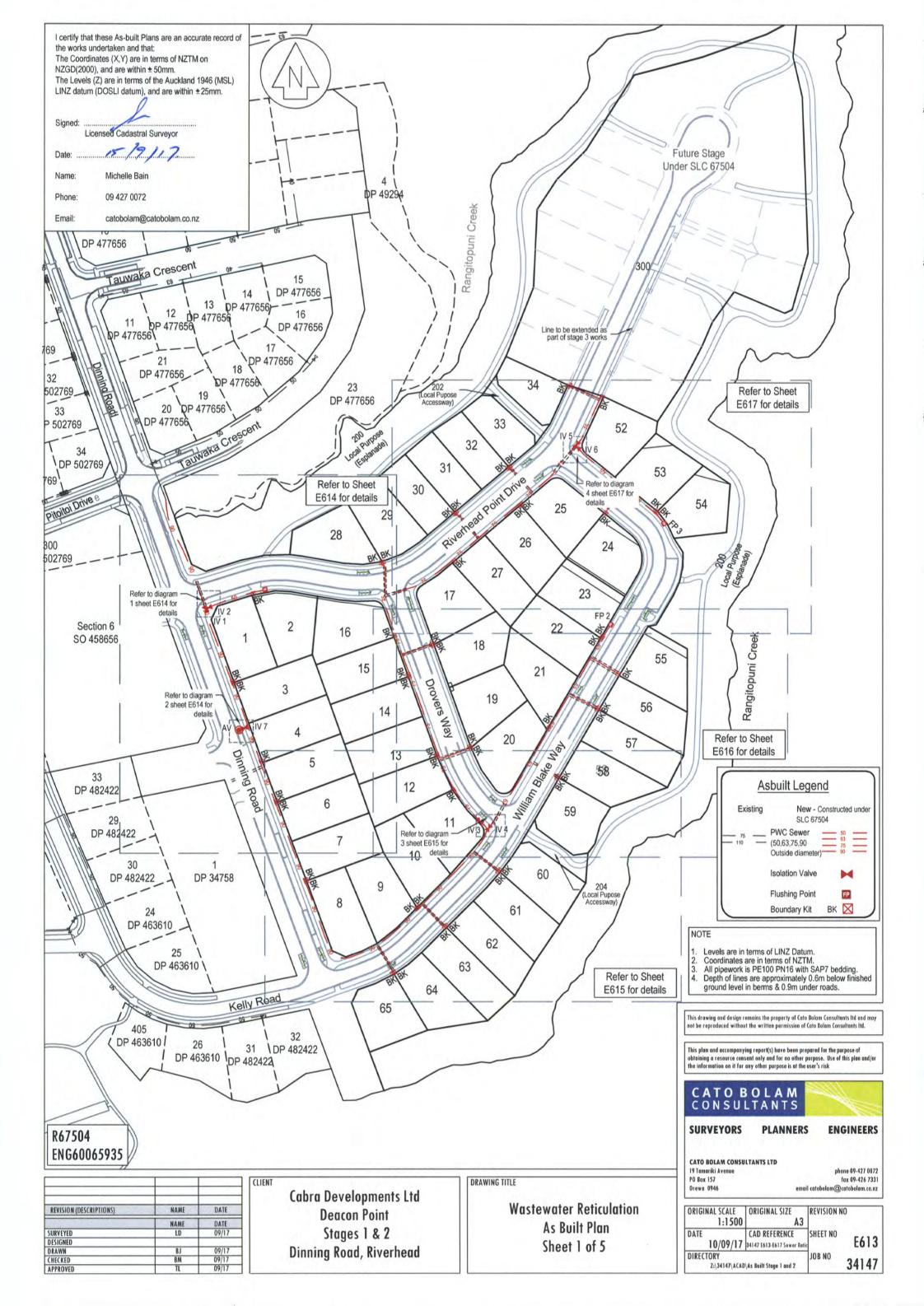
RIGINAL SCALE	ORIGINAL SIZE		REVISION NO	D.O.
1:500		A3		R2
ATE	CAD REFERENCE		SHEET NO	
10/09/2017	34147 E609-E612 Rd	ading		E610
IRECTORY			JOB NO	
Z:\34147\ACAD\As	Buil1 Stage 1 and 2			34147

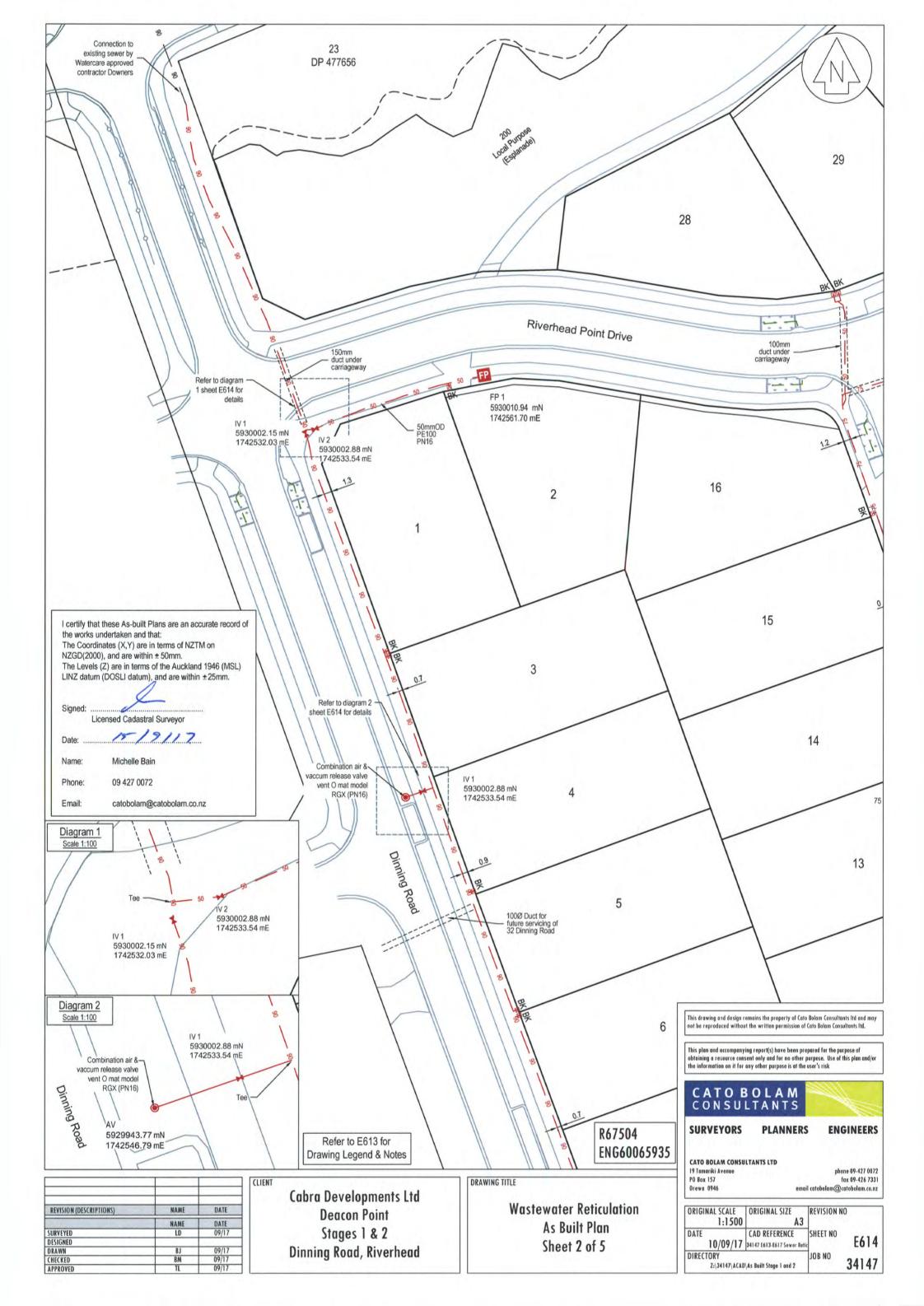
CATO BOLAM CONSULTANTS LTD

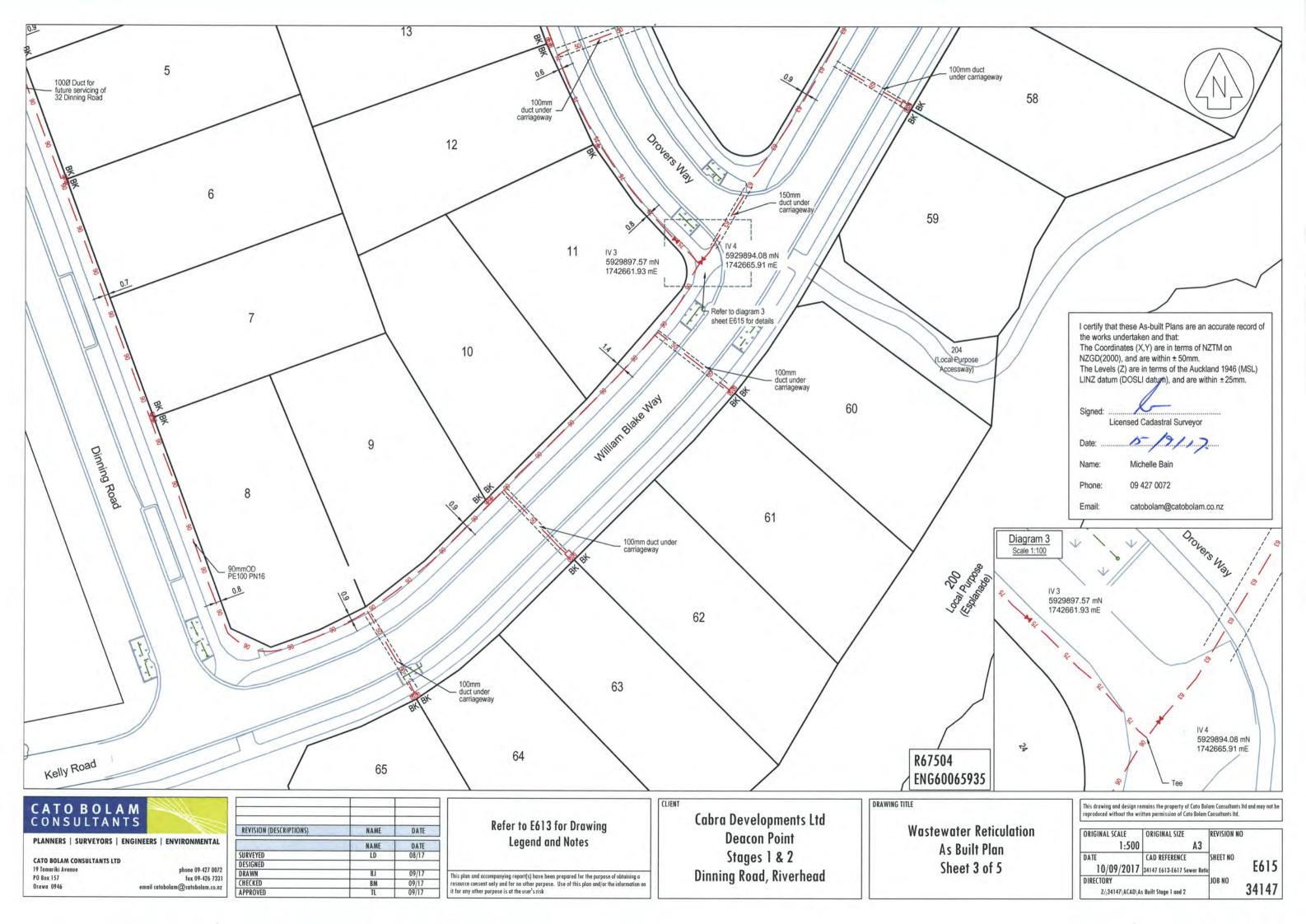
phone 09-427 0072 19 Tamariki Avenue fax 09-426 7331 email catobolam@catobolam.co.nz

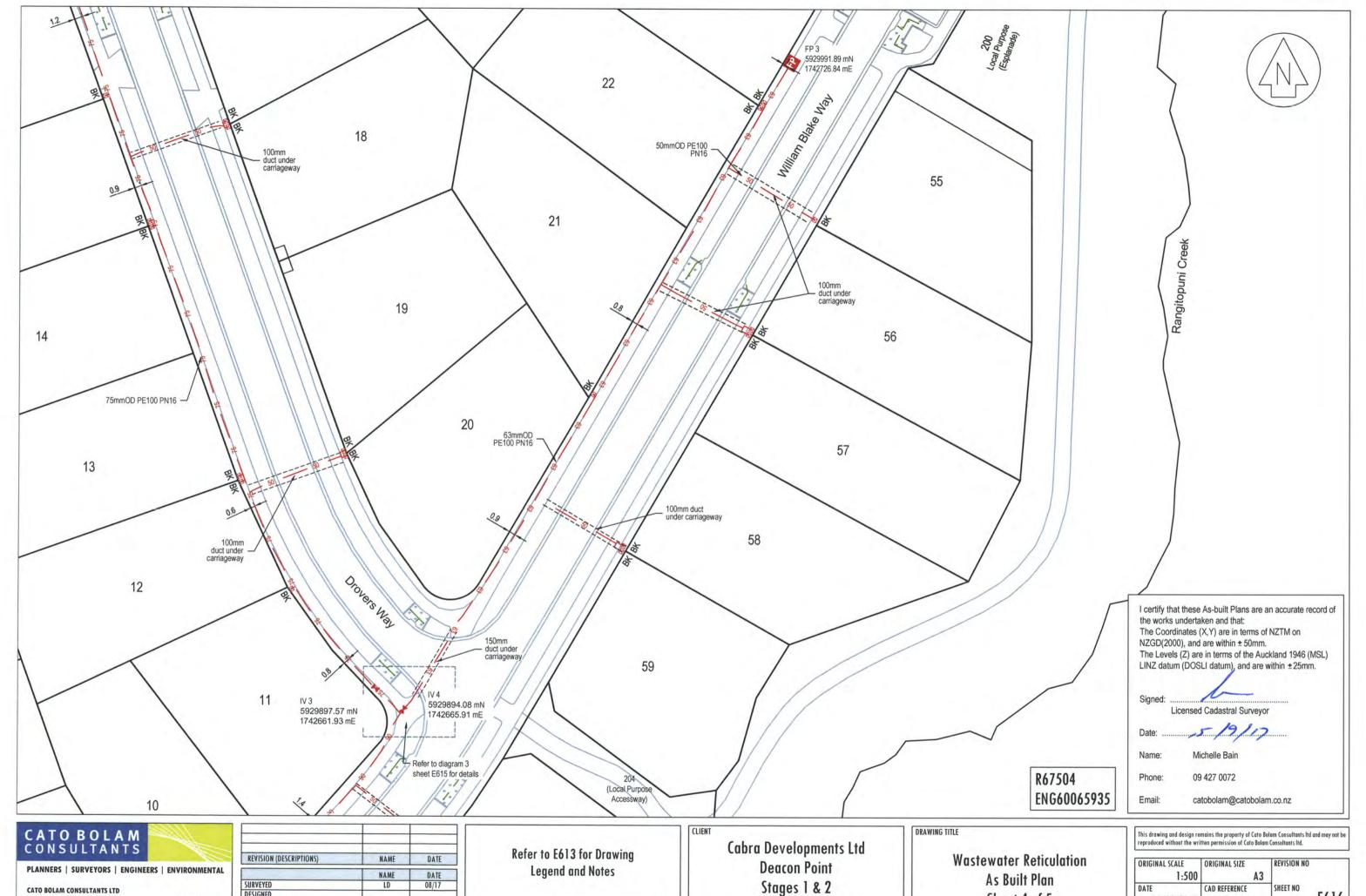
REVISION (DESCRIPTIONS)	NAME	DATE
	NAME	DATE
SURVEYED	LD & BJ	08/17
DESIGNED		
DRAWN	BJ	09/17
CHECKED	BM	09/17
APPROVED	TL	09/17


Legend and Notes


This plan and accompanying report(s) have been prepared for the purpose of obtaining a resource consent only and for no other purpose. Use of this plan end/or the information o it for any other purpose is at the user's risk

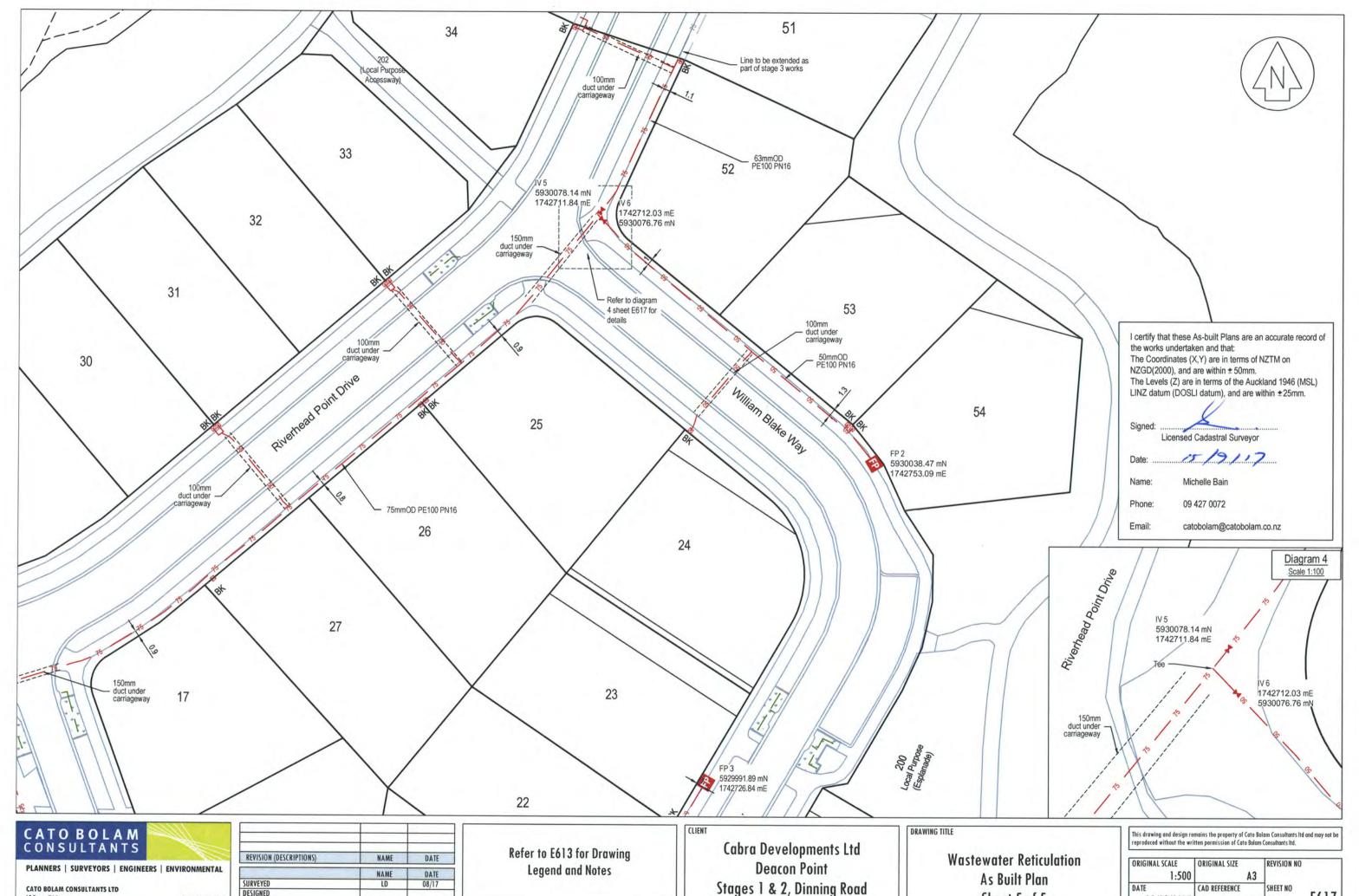

Stages 1 & 2 Dinning Road, Riverhead


As Built Plan Sheet 3 of 4


ORIGINAL SCALE	ORIGINAL SIZE		REVISION NO	
1:500		A3		R2
DATE	CAD REFERENCE		SHEET NO	
10/09/2017	34147 E609-E612 Ro	ading		E611
DIRECTORY			JOB NO	
Z:\34147\ACAD\As	Buill Slage 1 and 2			34147

19 Tamariki Avenue PO Box 157 Orewa 0946

phone 09-427 0072 fax 09-426 7331 email catobolam@catobolam.co.nz


REVISION (DESCRIPTIONS)	NAME	DATE
	NAME	DATE
SURVEYED	LD	08/17
DESIGNED		
DRAWN	BJ	09/17
CHECKED	BM	09/17
APPROVED	TL	09/17

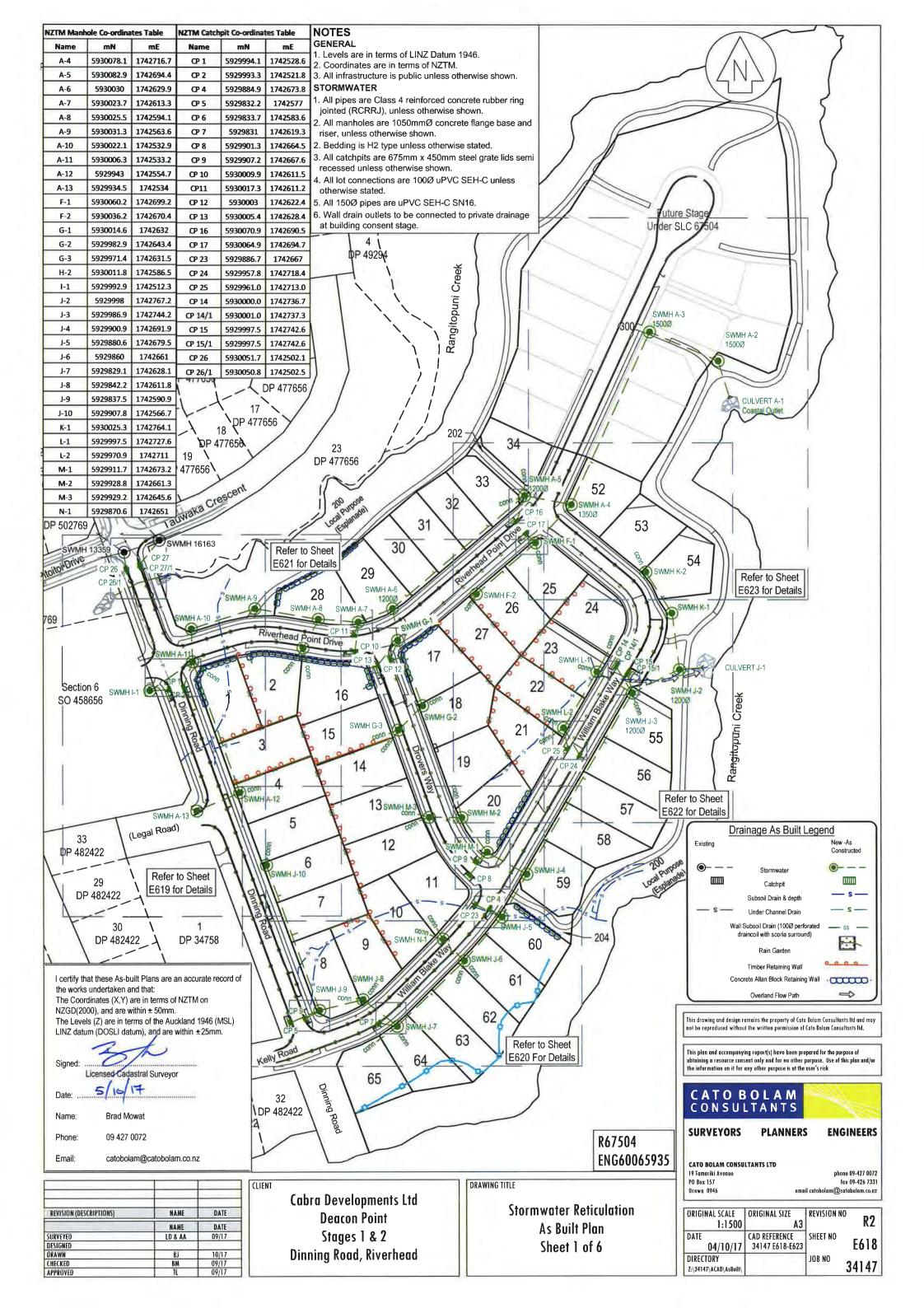
This plan and accompanying report(s) have been prepared for the purpose of obtaining a resource consent only and for no other purpose. Use of this plan and/or the information on it for any other purpose is at the user's risk

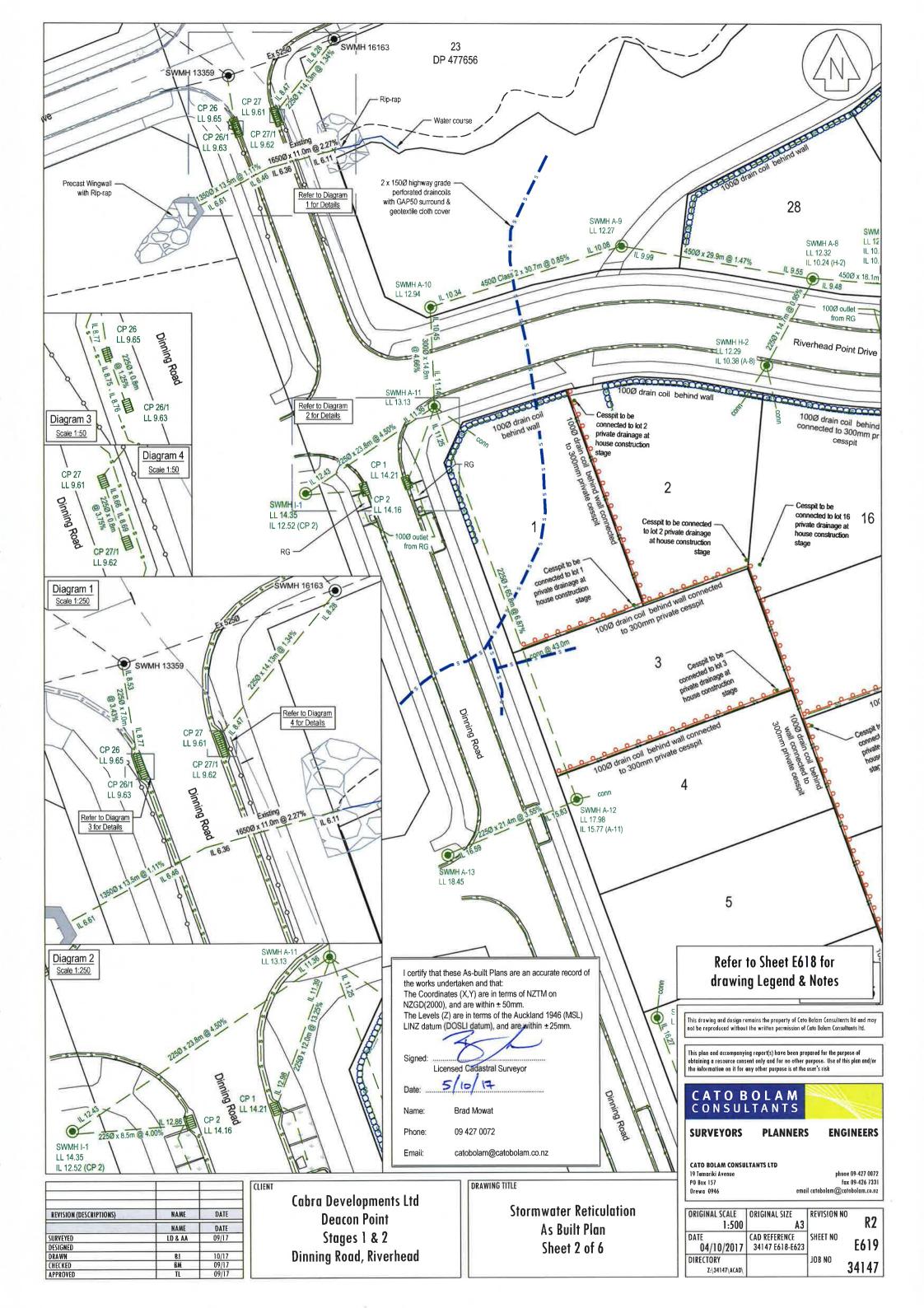
Stages 1 & 2 Dinning Road, Riverhead

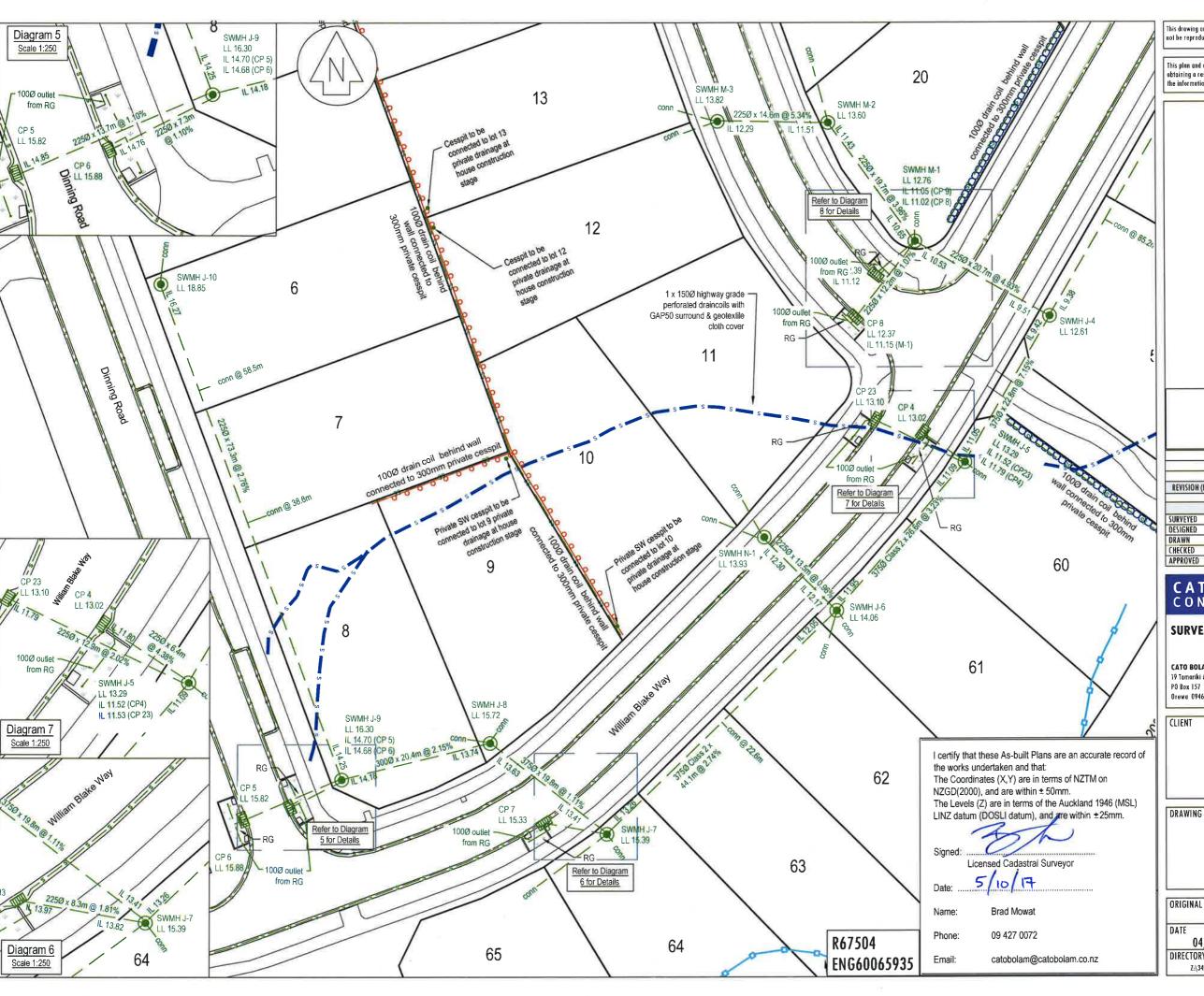
Sheet 4 of 5

ORIGINAL SCALE	ORIGINAL SIZE	REVISION N	0
1:500	A3		
10/09/2017	CAD REFERENCE 34147 E613-E617 Sewer Retic	SHEET NO	E616
DIRECTORY Z:\34147\ACAD\A	s Built Stage 1 and 2	JOB NO	34147

phone 09-427 0072 19 Tamariki Avenue fax 09-426 7331 email catobolam@catobolam.co.nz


		-
REVISION (DESCRIPTIONS)	NAME	DATE
	NAME	DATE
SURVEYED	LD	08/17
DESIGNED		
DRAWN	BJ	09/17
CHECKED	BM	09/17
APPROVED	TL	09/17


This plan and accompanying report(s) have been prepared for the purpose of obtaining a resource consent only and for no other purpose. Use of this plan and/or the information on it for any other purpose is at the user's risk


Stages 1 & 2, Dinning Road Riverhead

Sheet 5 of 5

ORIGINAL SCALE	ORIGINAL SIZE	REVISION NO	
1:500	A3		
DATE 10/09/2017	CAD REFERENCE 34147 E613-E617 Sewer Retic	SHEET NO	E617
DIRECTORY Z:\34147\ACAD\As Built Stage 1 and 2		JOB NO	34147

This drawing and design remains the property of Cato Bolam Consultants Itd and may not be reproduced without the written permission of Cato Bolom Consultants ltd.

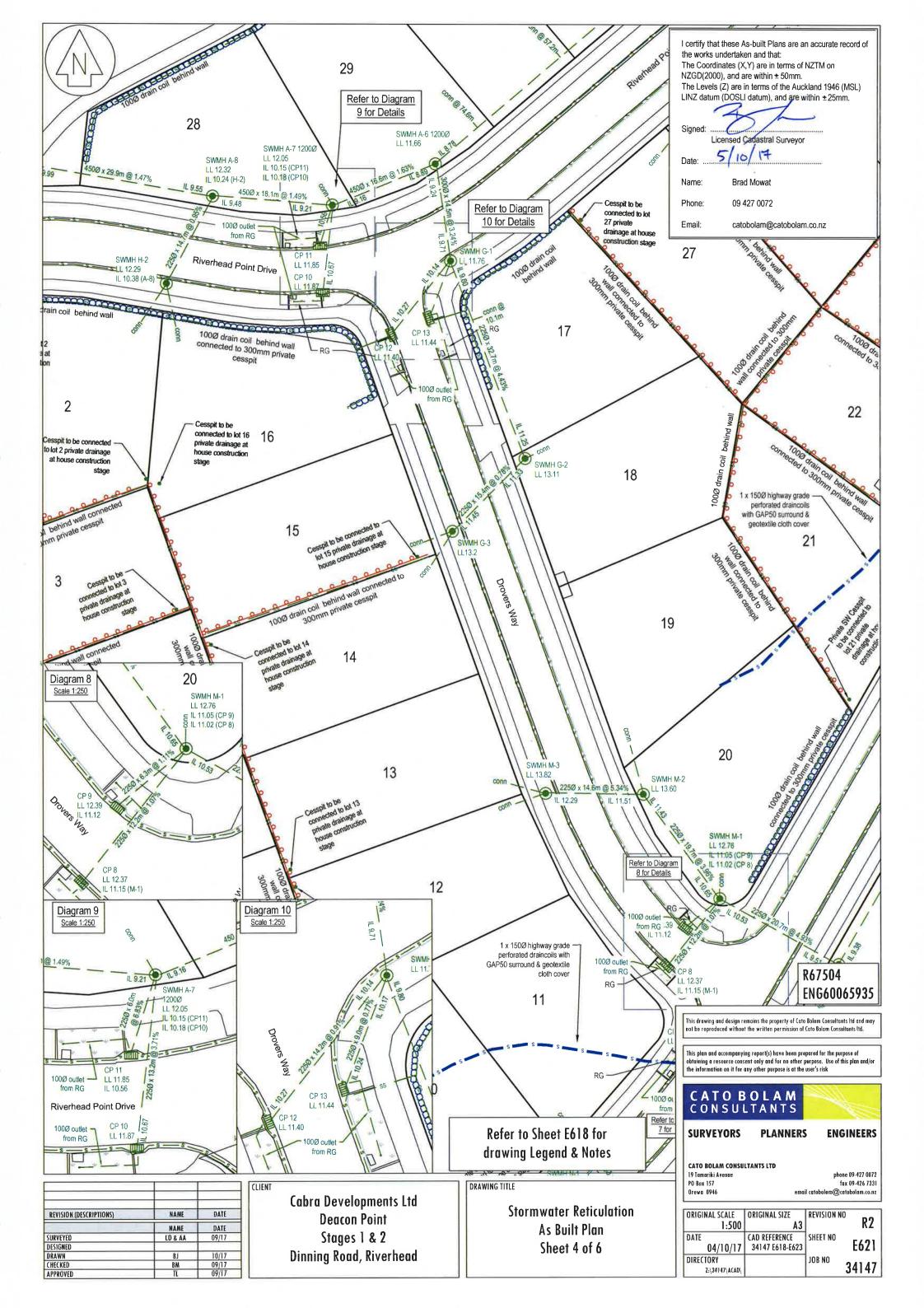
This plan and accompanying report(s) have been prepared for the purpose of obtaining a resource consent only and for no other purpose. Use of this plan and/or the information on it for any other purpose is at the user's risk

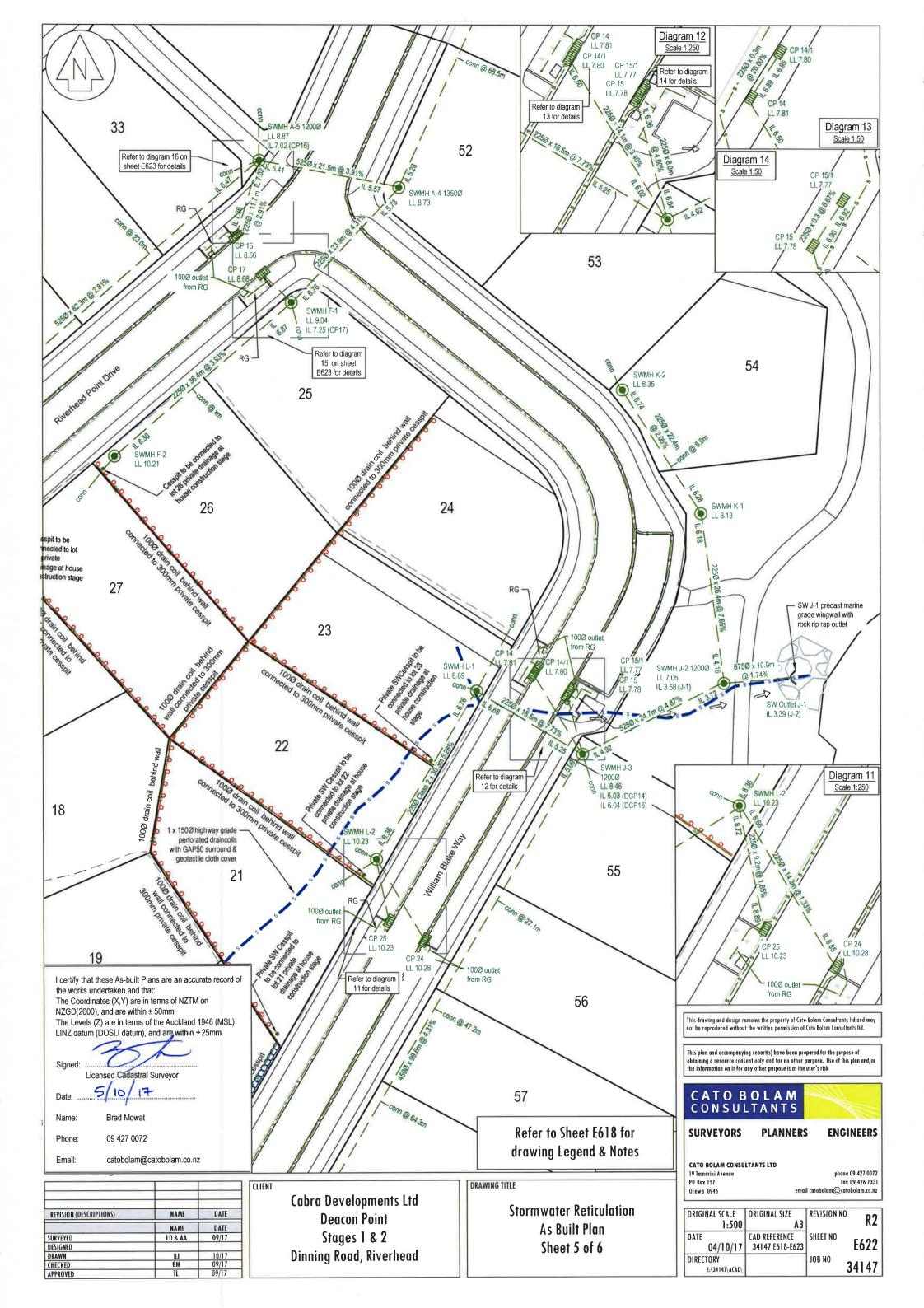
Refer to Sheet E618 for drawing Legend & Notes

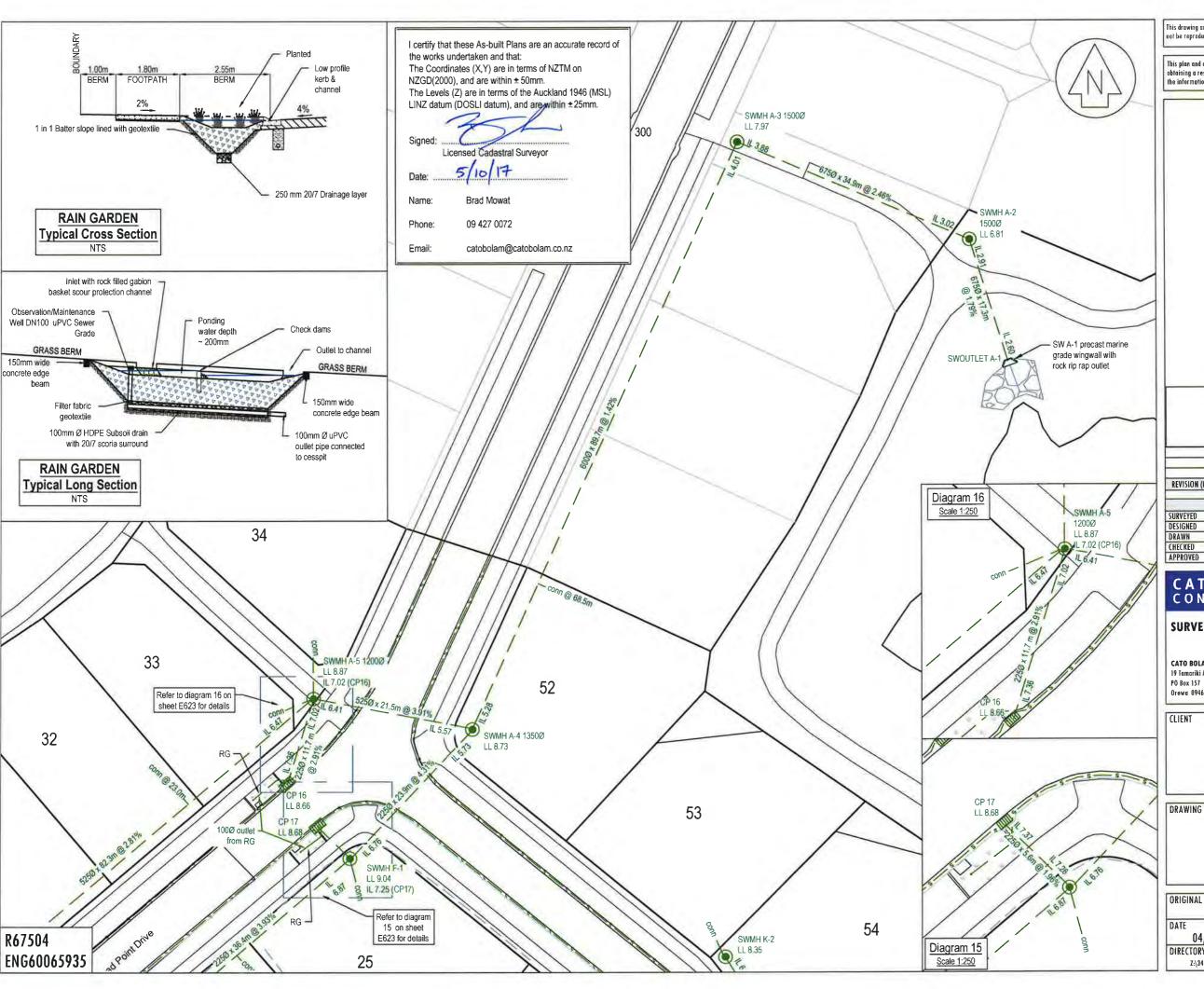
REVISION (DESCRIPTIONS)	NAME	DATE
	NAME	DATE
SURVEYED	LD & AA	09/17
DESIGNED		
DRAWN	BJ	10/17
CHECKED	BM	09/17
APPROVED	TL	09/17

PLANNERS ENGINEERS SURVEYORS

CATO BOLAM CONSULTANTS LTD


19 Tamariki Avenue


phone 09-427 0072 fax 09-426 7331 email catobolam@catobolam.co.nz


CLIENT Cabra Developments Ltd **Deacon Point** Stages 1 & 2 Dinning Road, Riverhead

Stormwater Reticulation As Built Plan Sheet 3 of 6

ORIGINAL SCALE 1:500	ORIGINAL SIZE	REVISION NO	R2
DATE 04/10/17	CAD REFERENCE 34147 E618-E623	SHEET NO	E620
DIRECTORY Z:\34147\ACAD\		JOB NO	34147

This drawing and design remains the property of Cato Bolam Consultants ltd and may not be reproduced without the written permission of Cato Bolam Consultants ltd.

This plan and accompanying report(s) have been prepared for the purpose of obtaining a resource consent only and for no other purpose. Use of this plan and/or the information on it for any other purpose is at the user's risk

Refer to Sheet E618 for drawing Legend & Notes

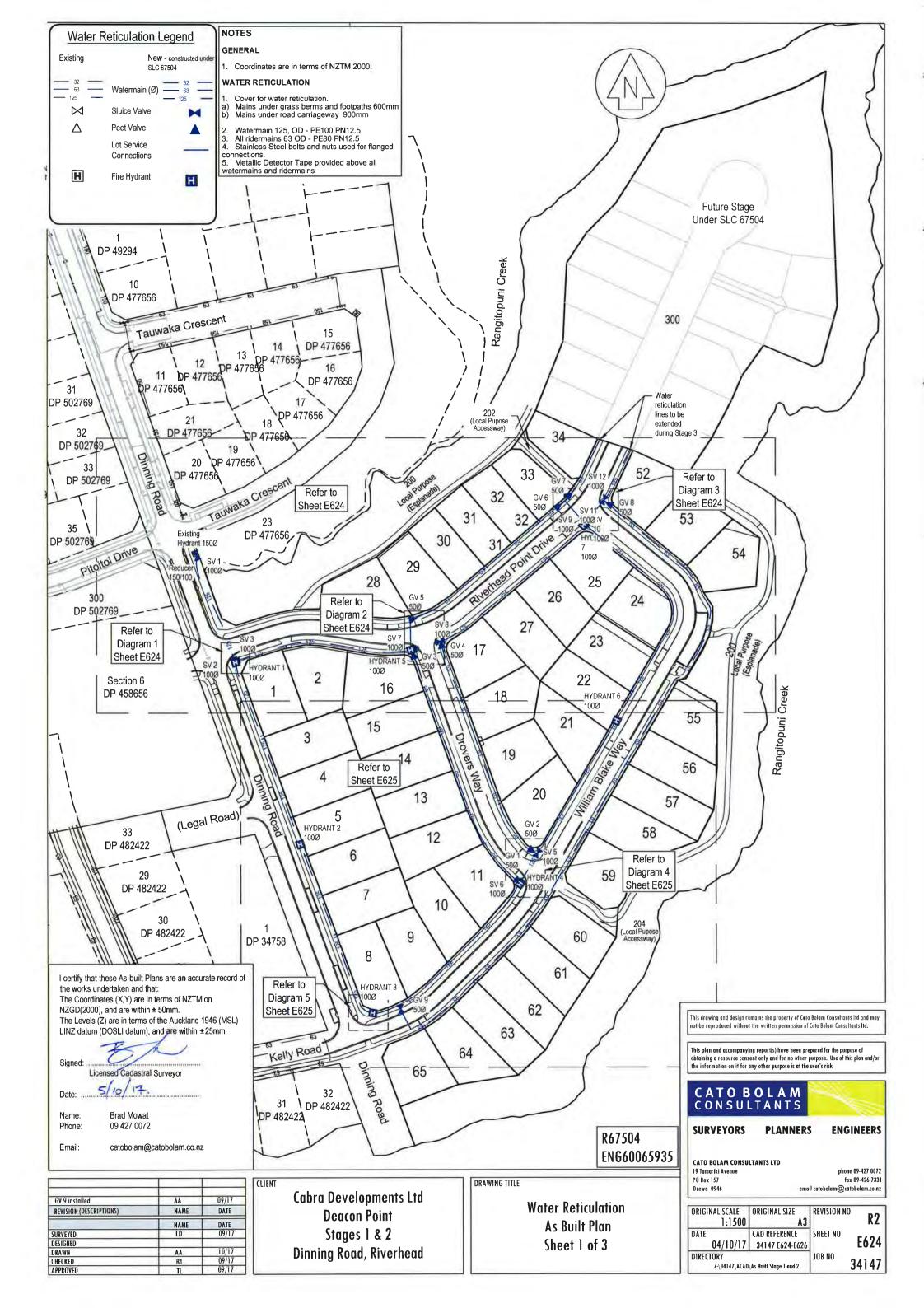
REVISION (DESCRIPTIONS)	NAME	DATE
	NAME	DATE
SURVEYED	LD & AA	09/17
DESIGNED		
DRAWN	BJ	10/17
CHECKED	BM	09/17
APPROVED	TL	09/17

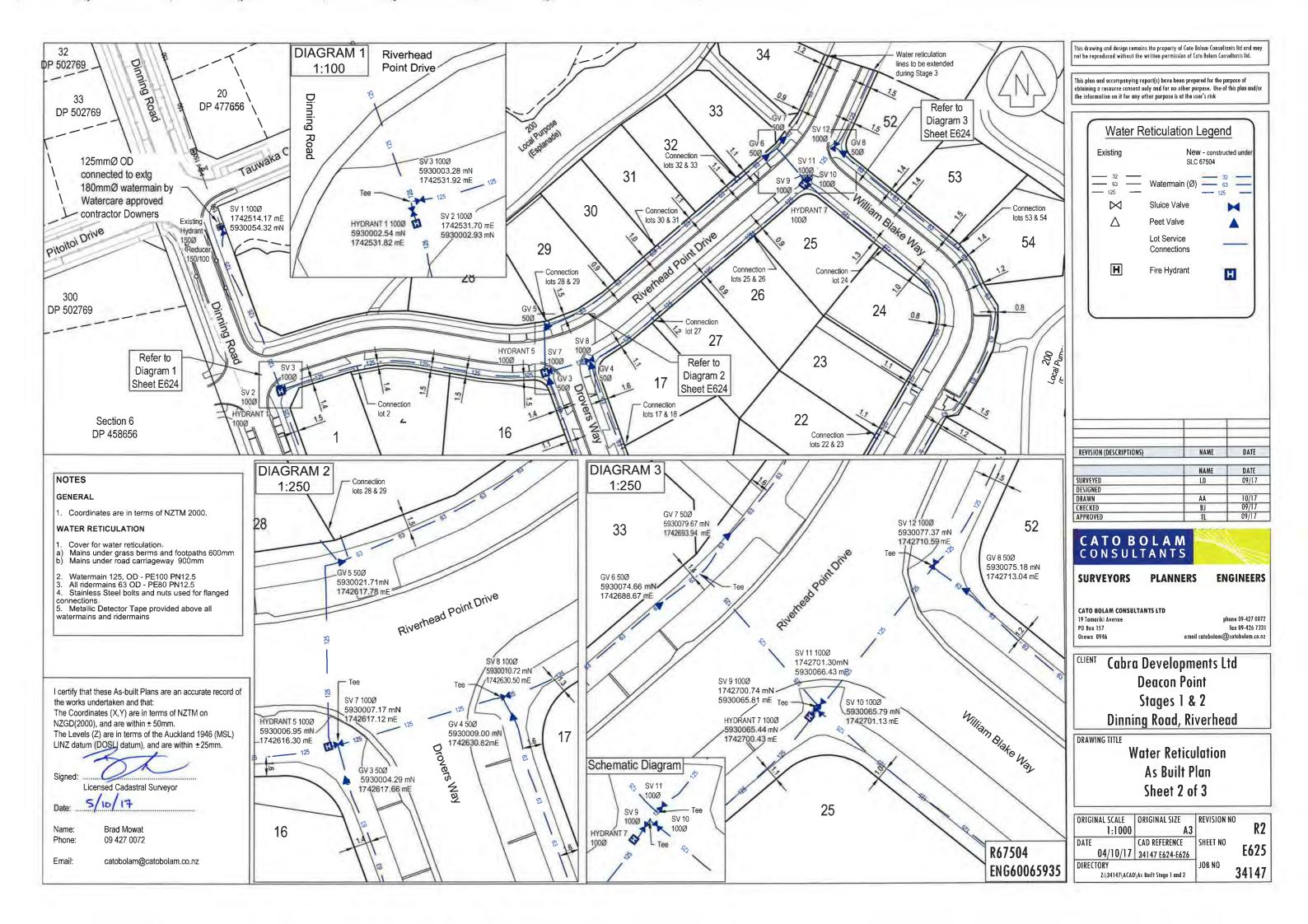
CATO BOLAM CONSULTANTS

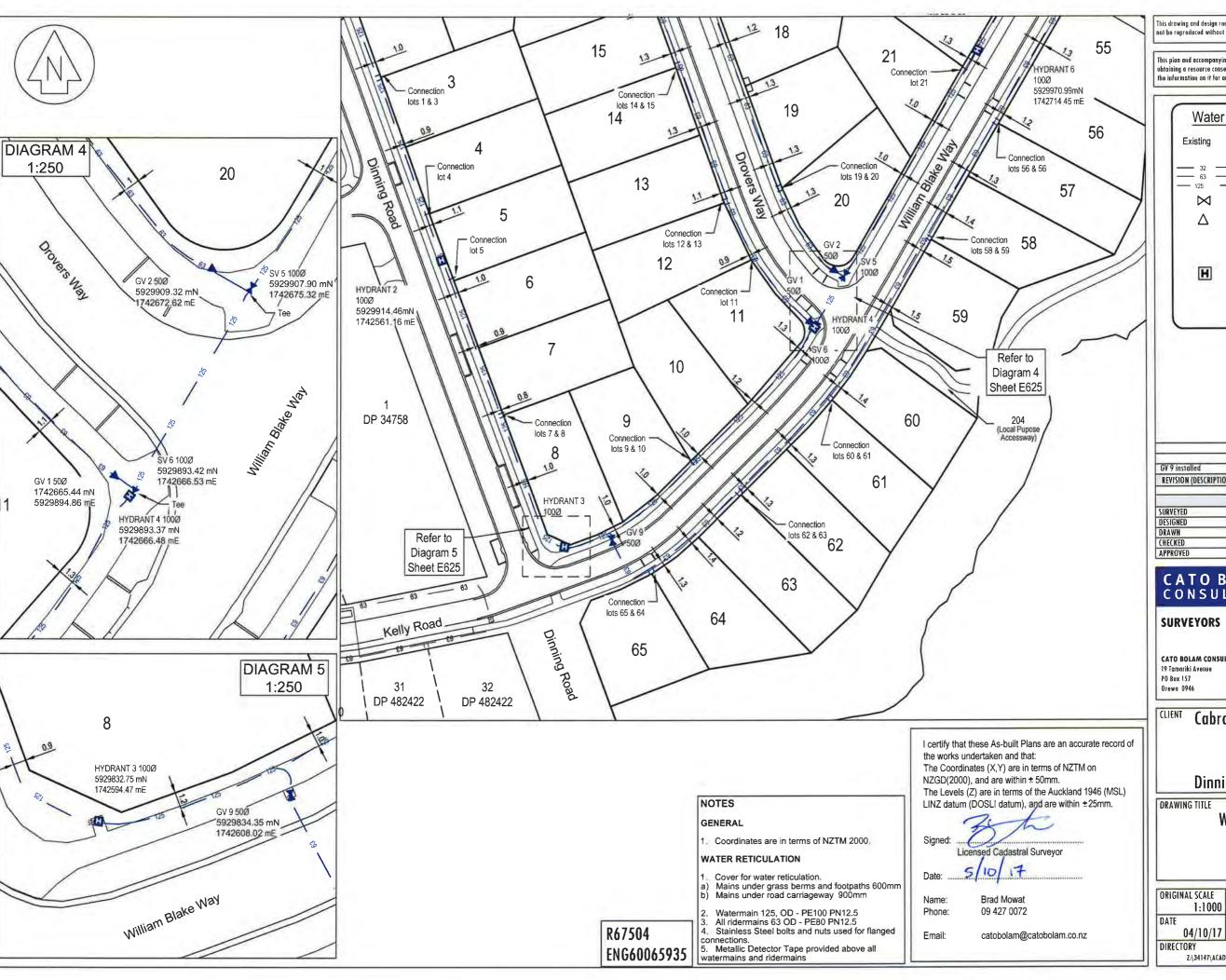
PLANNERS SURVEYORS

ENGINEERS

CATO BOLAM CONSULTANTS LTD


19 Tamariki Avenue


phone 09-427 0072 fax 09-426 7331 email catobolam@catobolam.co.nz


CLIENT Cabra Developments Ltd **Deacon Point** Stages 1 & 2 Dinning Road, Riverhead

Stormwater Reticulation As Built Plan Sheet 6 of 6

ORIGINAL SCALE 1:500	ORIGINAL SIZE	REVISION NO	R2
DATE 04/10/17	CAD REFERENCE 34147 E618-E623	SHEET NO	E623
DIRECTORY Z:\34147\ACAD\		JOB NO	34147

This drawing and design remains the property of Calo Bolam Consultants tid and may not be reproduced without the written permission of Cato Bolam Consultants tid.

This plan and accompanying report(s) have been prepared for the purpose of obtaining a resource consent only and for no other purpose. Use of this plan and/or the information on it for any other purpose is at the user's risk

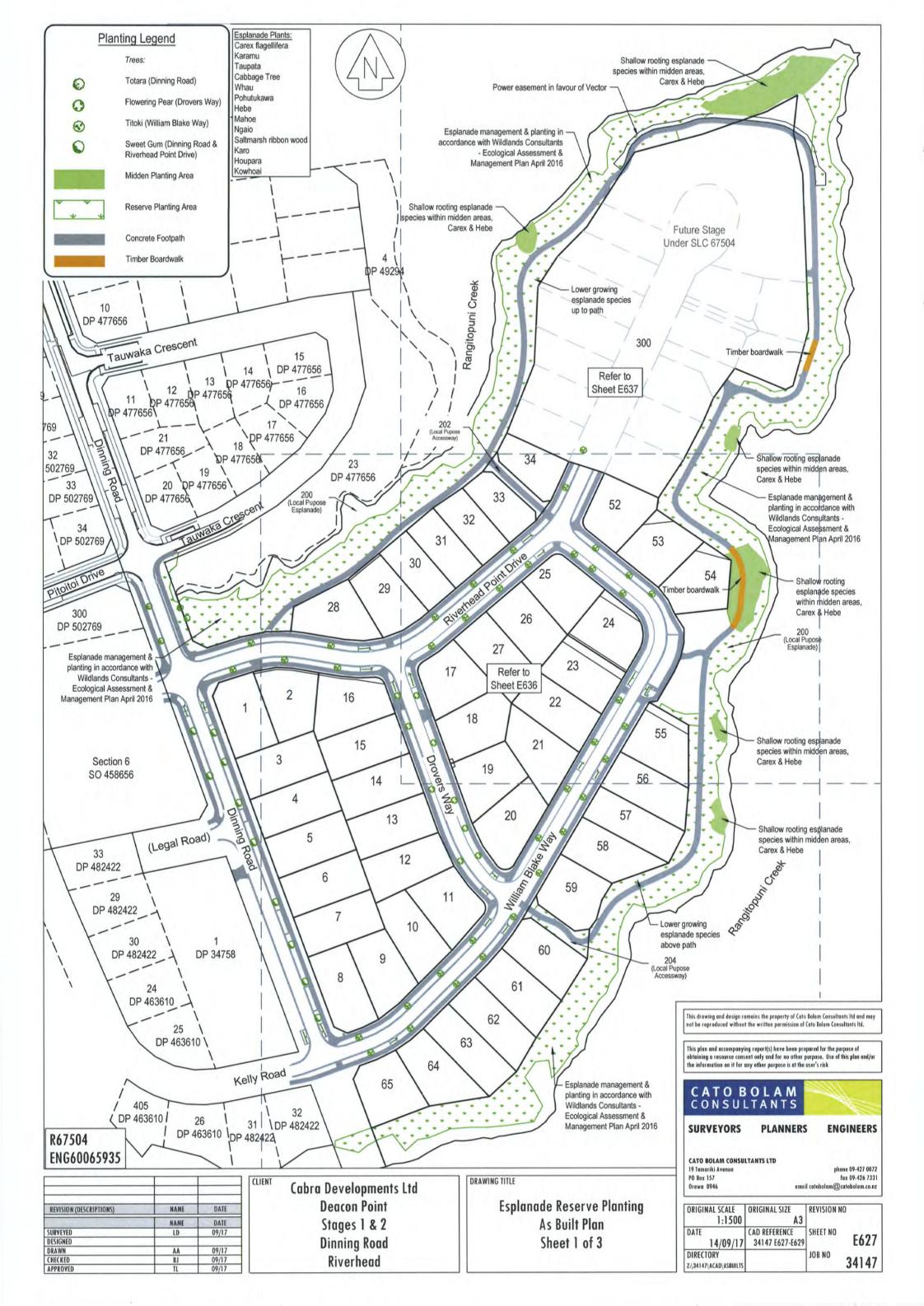
GV 9 installed	AA	09/17
REVISION (DESCRIPTIONS)	NAME	DATE
	NAME	DATE
SURVEYED	LD	09/17
DESIGNED		
DRAWN	AA	10/17
CHECKED	BJ	09/17
APPROVED	TI	09/17

CATO BOLAM CONSULTANTS

PLANNERS

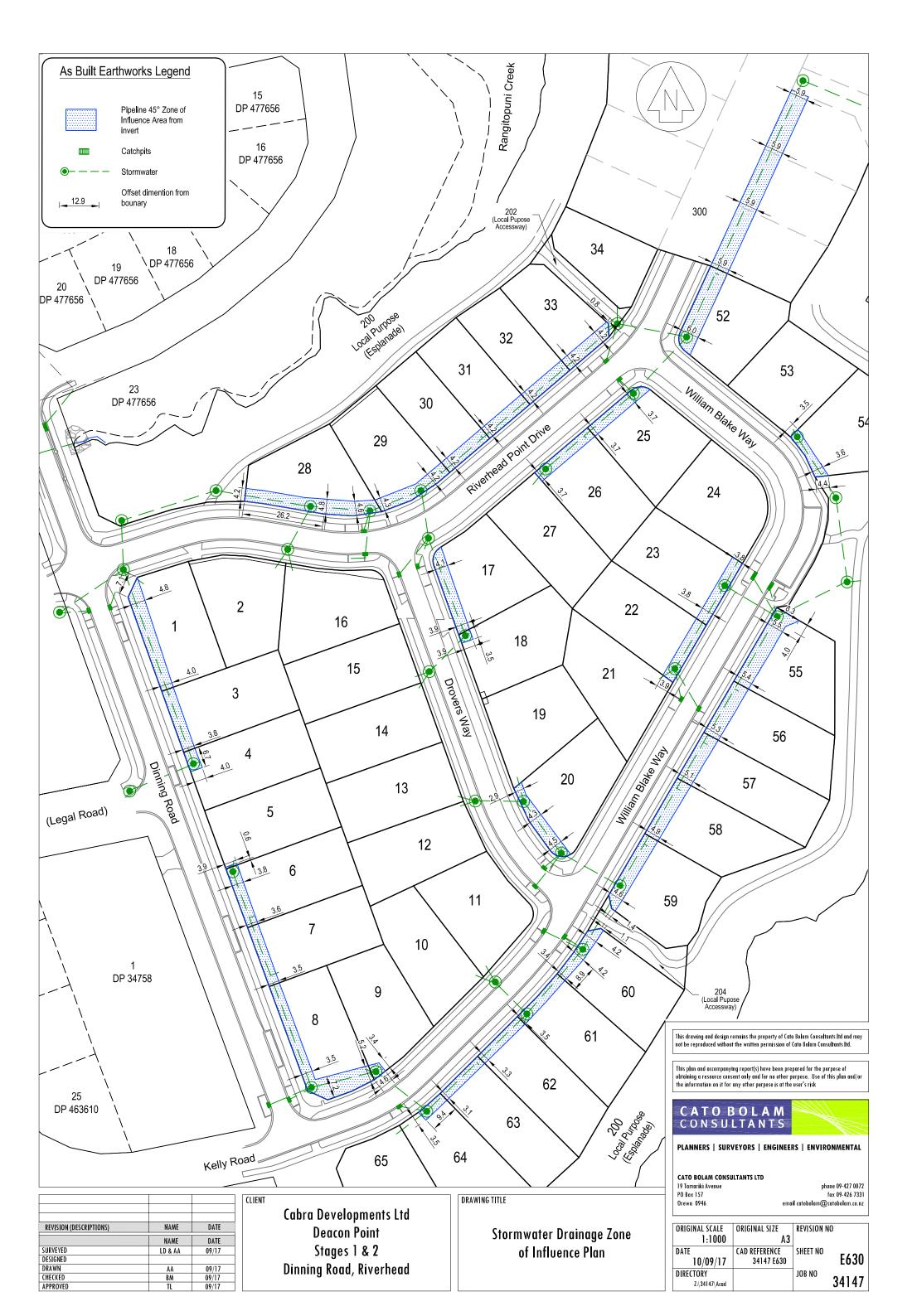
ENGINEERS

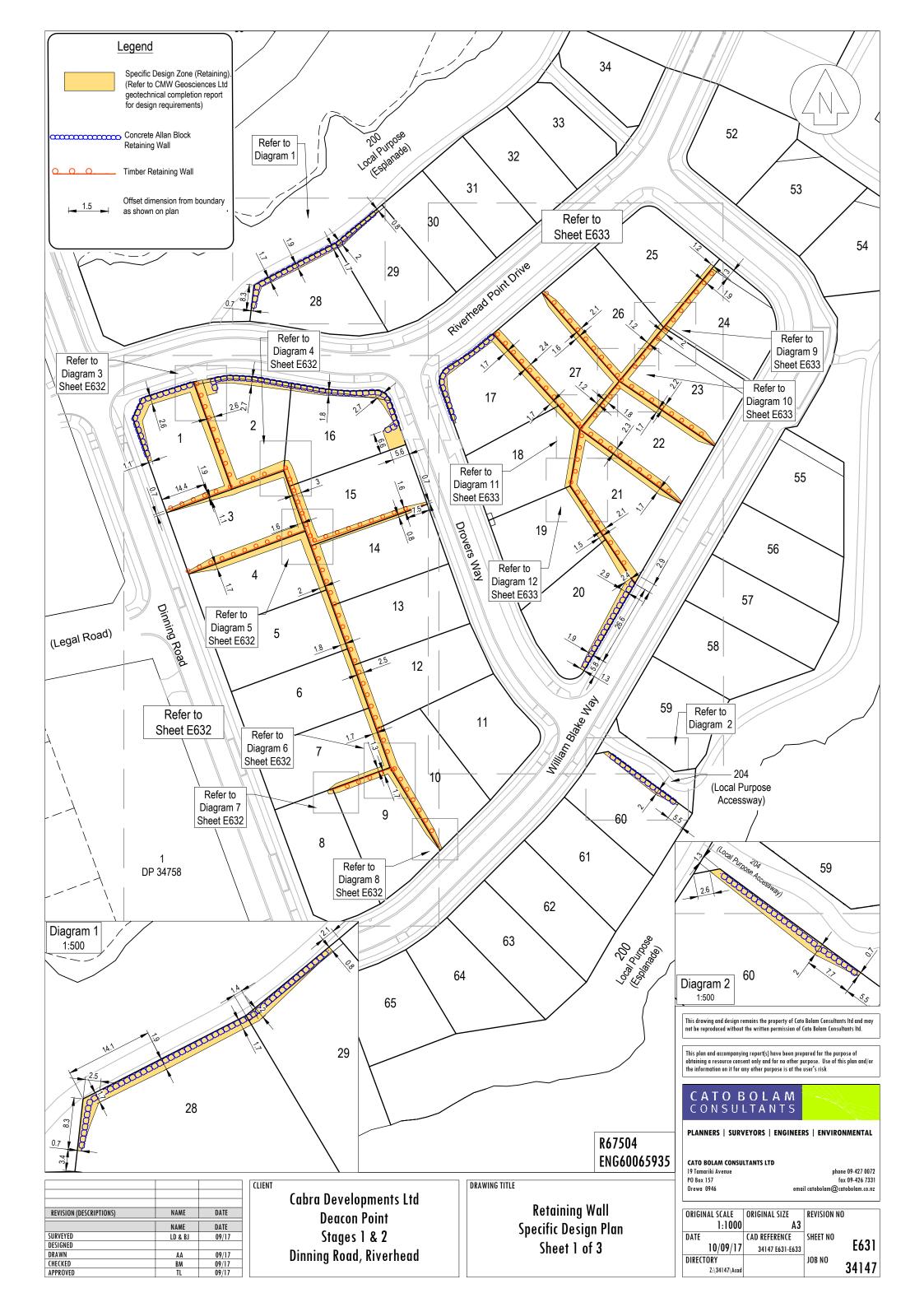
CATO BOLAM CONSULTANTS LTD

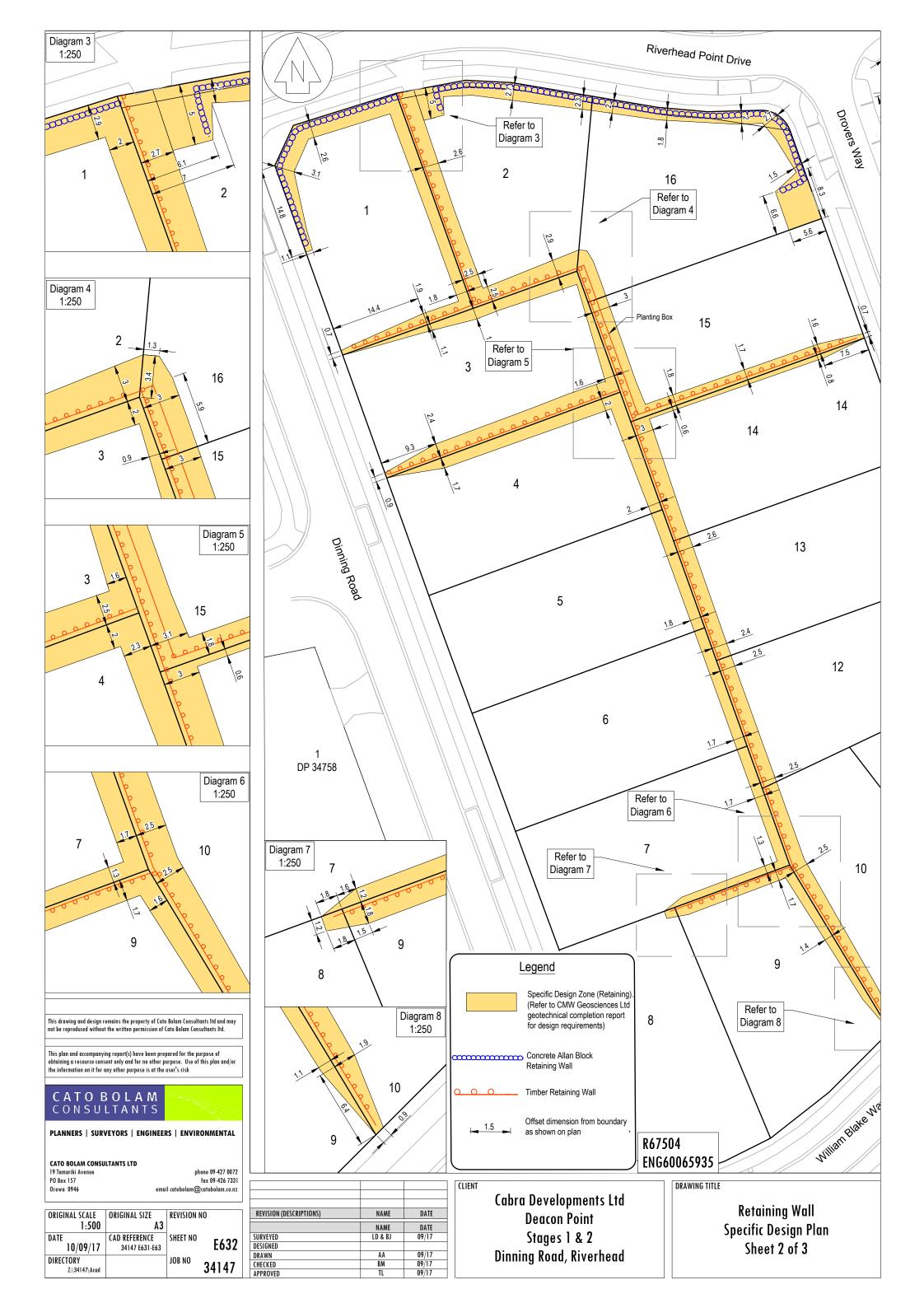

email catobalam@catobolom.co.nz

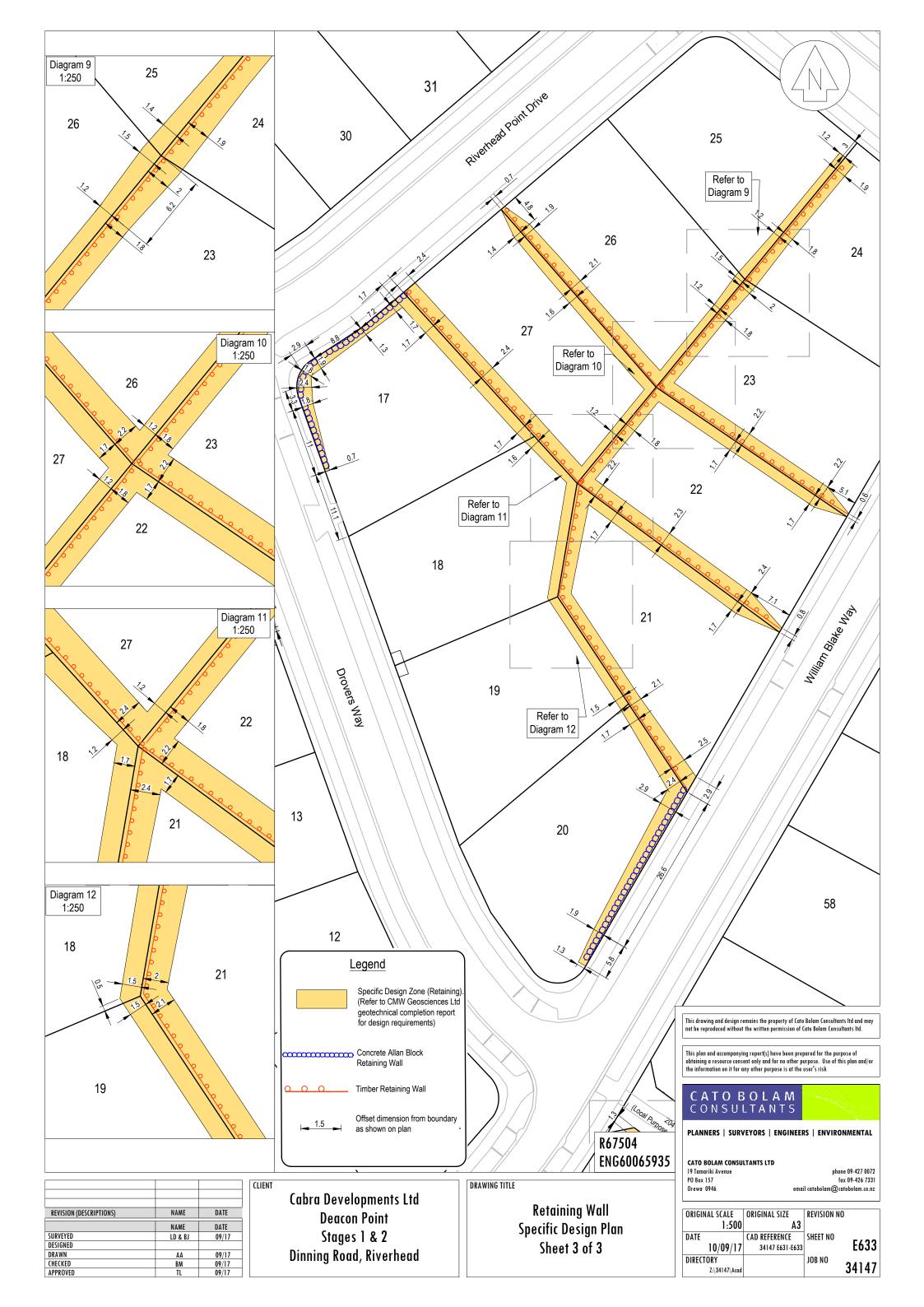
phone 09-427 0072

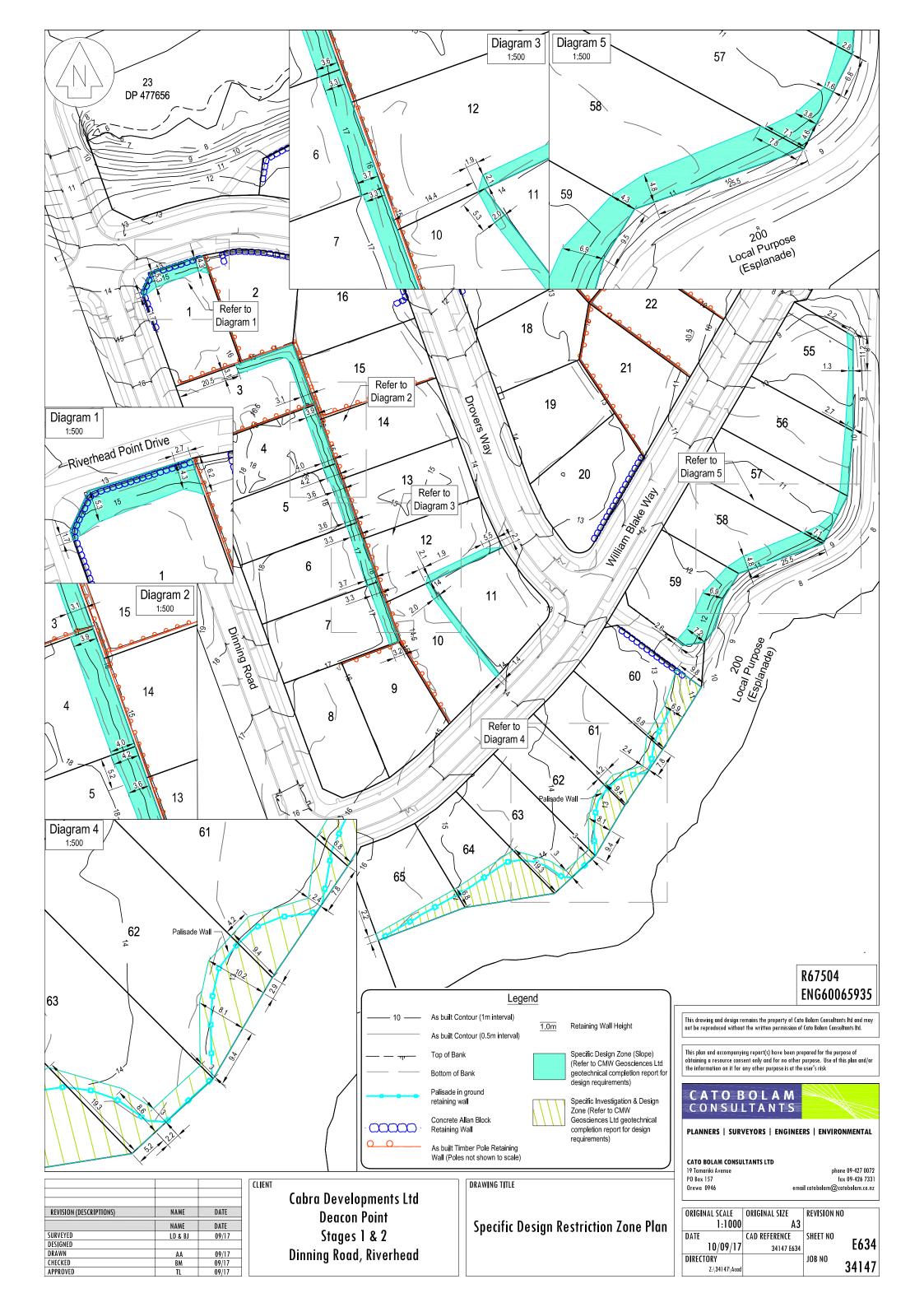
Cabra Developments Ltd **Deacon Point** Stages 1 & 2 Dinning Road, Riverhead


Water Reticulation As Built Plan Sheet 3 of 3


ORIGINAL SCALE	ORIGINAL SIZE	REVISION N	10
1:1000	A3		
DATE	CAD REFERENCE	SHEET NO	r/0/
04/10/17	34147 E624-E626		E626
DIRECTORY	JOB NO	04147	
Z:\34147\ACAD	As Built Stage 1 and 2		34147







Appendix C

Laboratory Test Data

Report No: 16 0033 00

Page: 1 of 1

DETERMINATION OF THE LIQUID LIMIT, PLASTIC LIMIT, PLASTICITY INDEX & LINEAR SHRINKAGE TEST METHOD NZS 4402 : 1986 TEST 2.2, 2.3, 2.4 & 2.6

Job: 29 Dinning Road

Date of order: 19.2.16 Sample origin: - Sample method: HA Sample Description: -

Sample By: MB Date: 18.2.16

Test Details:

Test performed on: Whole Sample

History: Natural

Sample No.	Location	Depth (m)	Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)	Linear Shrinkage (LS)	Natural Water Content (%)
E145A	HA2	0.8m - 1.2m	69	24	45	19	26.0
E146A	HA10	0.4m	31	21	10	6	18.6

Comments:

Tested By:	EC	Date :	24.02.16
Calculated By :	EC	Date :	25.02.16
Checked By:	EC	Date :	29.02.16

Report No: 17 0183 00 Page: 1 of 1

DETERMINATION OF THE LIQUID LIMIT & LINEAR SHRINKAGE TEST METHOD NZS 4402: 1986 TEST 2.2 & 2.6

Job: Dinning Road, Riverhead

Sample origin: Date of order: As below

Sample Description: Hand auger Sample method:

Sample By: CMW Geosciences NZ Ltd Date: 29.06.17

Test Details:

Test performed on: Whole Sample

History: Natural

Sample No.	Location	Depth (m)	Liquid Limit	Linear Shrinkage	Natural Water Content (%)
418F	Lot 65	0.4 to 0.6	57	14	30.7
419F	Lot 16	0.4 to 0.6	56	16	30.7

Comments:

Tested By: EC Date: 14.07.17 Calculated By: ZΗ Date: 19.07.17 Checked By: ZΗ Date: 20.07.17

Report No: 17 0199 00

Page: 1 of 1

DETERMINATION OF THE LIQUID LIMIT & LINEAR SHRINKAGE TEST METHOD NZS 4402 : 1986 TEST 2.2 & 2.6

Job: 29 Dinning Road, Riverhead

Date of order: 03.08.17 Sample origin: As below

Sample method: Hand auger Sample Description:

Sample By: CMW Geosciences NZ Ltd Date: 26.07.17

Test Details :

Test performed on: Whole Sample

History: Natural

Sample No.	Location	Depth (m)	Liquid Limit	Linear Shrinkage	Natural Water Content (%)
433F	42	0.2 to 0.6	59	16	28.7
434F	51	0.2 to 0.6	50	13	28.3
435F	33	0.4 to 0.8	52	12	30.2
436F	57	0.2 to 0.5	60	15	28.1

Comments:

 Tested By:
 SN & MW
 Date :
 04 to 07.08.17

 Calculated By :
 ZH
 Date :
 11.08.17

 Checked By :
 KH
 Date :
 11.08.17

Appendix D

Field Test Data

LF11 Rev 4 Soil Field Density NDM Direct Transmission with VSS Report

Auckland Laboratory CMW Geosciences (NZ) Limited

Building C, 9 Piermark Drive, Rosedale, NZ 0632 PO Box 300206, Albany, Auckland, NZ 0752

Phone: +64 (09) 4144 632

Project: 29 Dinning Road, Riverhead Project No: AKL2015_0326

Location: Riverhead

Report No: AKL2016_0326LAA Rev.0

Report Date: 5/12/2016

Client: Cabra Developments Limited

Client Address: PO Box 197, Orewa 0946

Client Reference:

Test Methods:

NZS 4402.2.1:1986

Solid Density:

Notes:

Testing Locations Selected By:

Assumed CMW Field Staff

NZS 4407.4.2.2:2015 NZGS:August 2001

Tests indicated as not accredited are outside the scope of the laboratory's accreditation

Measurements marked * are not accredited and are outside the scope of the laboratories accreditation

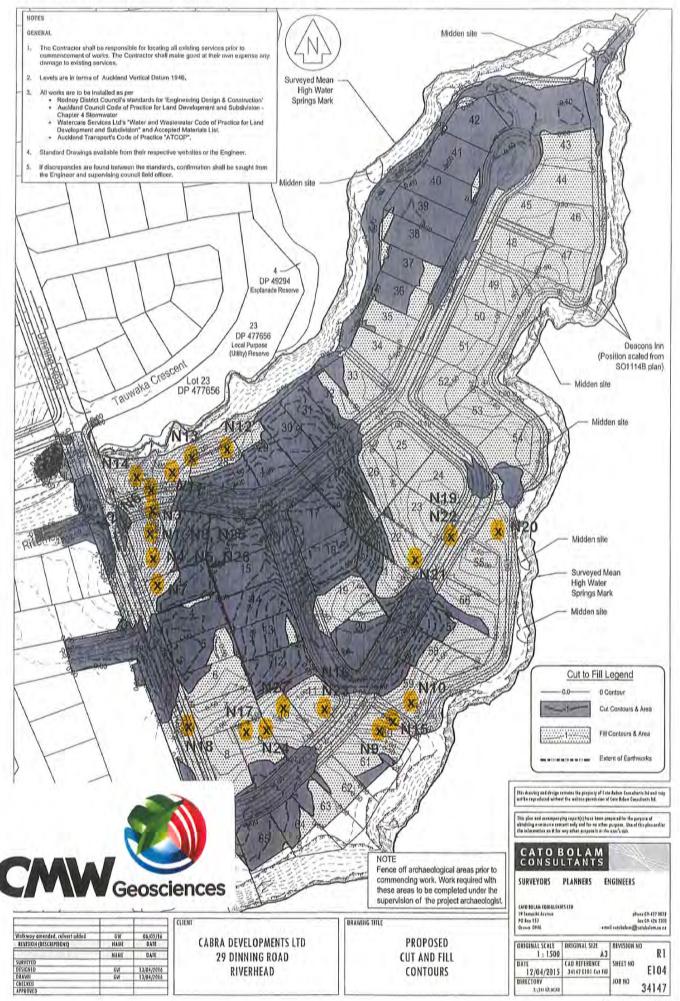
	Sample No.			- 1	n-situ Va	ne Shear	Strength	5				Field and Laboratory Testing Data						
Date Sampled		Test Location	Soli Description	Test 1 (kPa)	Test 2 (kPa)	Test 3 (kPa)	Test 4 (kPa)	Ave.	Gauge Wet Density (t/m ³)	Gauge Dry Density (t/m³)	Gauge Water Content (%)	Gauge Air Voids (%)	Gauge Probe Depth	Oven Water Content (%)	Solid Density (t/m³) *	Oven Dry Density (t/m³)	Calculated Air Voids (%)	Comment
21/10/2016	NI	Lot 1	CLAY	119	113	127	132	123	1.7840	1,3086	36.3	3.89	300	41.8	2,7	1.26	0,83	Failed
	N2	Road 1	CLAY	94	103	100	113	103	1.7893	1.2463	43.6	-0.58	300	40.9	2.7	1.28	1.0	Failed
28/10/2016	N3	Road 1	CLAY	>189	>189	162	189	>182	1.8754	1.4339	30.8	2.65	300	28.8	2.7	1.46	4.1	Re-test of N2
	N4	Lot 1	CLAY	>189	>189	>189	>189	>189	1.8459	1.4006	31.8	3.49	300	29.7	2.7	1.42	5.0	Re-test of N1
1/11/2016	N5	Lot 1	CLAY	UTP	UTP	UTP	UTP	UTP	1.8568	1.4171	31.0	3,45	300	25.1	2.7	1.48		
	N6	Road 1 Entrance	CLAY	UTP	UTP	UTP	UTP	UTP	1.8781	1.4157	32.7	1.23	300	31.0	2.7	1.44	2.4	
3/11/2016	N7	Lot 3	CLAY	186	167	154	173	170	1,8372	1.3599	35.1	1.80	300	30.2	2.7	1.42	5.1	
	NB	Lot 1	CLAY	181	186	UTP	UTP	184	1.8323	1.3963	31.2	4.59	300	31.6	2.7	1.40		
10/11/2016	N9	Lot 60	CLAY	148	159	178	189	169	1.9667	1,5537	26.6	1.06	250	24.2	2.7	1.58	3.0	
	N10	Lot 59	CLAY	146	159	159	165	157	1,8702	1.4299	30.8	2.91	300	27,3	2.7	1.46	5.5	
	N11	Counterfort 1 North	CLAY	151	186	189	151	169	1.8963	1.4274	32.9	0.13	300	30.5	2.7	1.46		
	N12	Lot 28	CLAY	159	151	178	189	169	1.8746	1.4222	31.8	1,98	300	29.9	2.7	1.44		
11/11/2016	N13	West Gully	CLAY	154	159	140	148	150	1.8919	1.4524	30.3	2.16	300	29.9	2.7	1.46		
	N14	West Gully	CLAY	178	189	>189	>189	>186	1.8613	1.4147	31.6	2.85	300	30.3	2.7	1.42	3.8	
22/11/2016	N15	Lot 60	CLAY	189	151	165	189	174	1.9591	1.5290	28.1	0.26	300	23.9	2.7	1.58	3.7	
	N16-	Lot 11	CLAY	189	148	189	165	173	1.9240	1.5193	26.6	3.17	300	26.3	2.7	1.52		
	N17	Lat 9	CLAY	165	140	189	189	171	1.9545	1.5419	26.8	1.54	300	23.8	2.7	1.58	4.0	
3	N18	West of Lot 7	CLAY	189	189	146	157	170	1.8578	1.4319	29.7	4.29	300	29.4	2,7	1.44	4,6	
	N19	South of Lot 23	CLAY	165	189	>189	>189	>183	1.9085	1.5348	24.3	5.71	300	26.4	2.7	1.50	4.2	
	N20	North of Lot 55	CLAY	UTP	UTP	UTP	UTP	UTP	1.8741	1,4089	33.0	1.20	300	24.7	2.7	1.50	7.2	
24/11/2016	N21	Lot 22	Sandy CLAY	181	165	147	178	168	1.9493	1,5666	24.4	3.62	300	23.3	2.7	1.58	4.6	
	N22	South of Lot 23	Sandy CLAY	140	151	140	146	144	1.9840	1,5828	25.3	1.17	300	24.9	2.7	1.58	1.6	
29/11/2016	N23	Lot 11	CLAY	>189	>189	UTP	UTP	>189	1.9533	1.6101	21.3	5.97	250	22.1	2.7	1.60	5.4	
	N24	Lot 9	CLAY	UTP	UTP	UTP	UTP	UTP	2.0175	1.5963	26.4	-1.34	300	24.5	2.7	1.62	0,29	
	N25	Lot 1 N	CLAY	159	167	167	178	168	1,9583	1.5634	25.3	2.52	300	26.2	2.7	1.56	1.9	
	N26	Lot 1 S	CLAY	159	162	170	154	161	1.9076	1.5170	25.7	4.67	300	24.1	2.7	1.54	6.0	
2/12/2016	N27	Lot 10	CLAY	146	140	165	165	154	1.8827	1.5055	25.0	6.44	300	22,9	2.7	1.54	8.2	

This report should only be reproduced in full.

Created By: TG Checked By: TG

Authorised Signatory:

Date:


Date:

Date:

5/12/2016 6/12/2016

Page:

1 of 2

29 Dinning Road, Riverhead

AKL2016_0326LAB Rev.0

PO Box 197, Orewa 0946

Cabra Developments Limited

AKL2016_0326

Riverhead

11/01/2017

Project:

Project No:

Report No:

Report Date:

Client Address:

Location:

Client:

LF11 Rev 4 Soil Field Density NDM Direct Transmission with VSS Report

Auckland Laboratory

CMW Geosciences (NZ) Limited

Building C, 9 Piermark Drive, Rosedale, NZ 0632

PO Box 300206, Albany, Auckland, NZ 0752

Phone: +64 (09) 4144 632

Test Methods:

Notes:

NZS 4402.2.1:1986 NZS 4407.4.2.2:2015

Solid Density:

Testing Locations Selected By:

Assumed CMW Field Staff

NZGS:August 2001

IANZ ACCREDITED LABORATORY

Tests indicated as not accredited are outside the scope of the laboratory's accreditation

Measurements marked " are not accredited and are outside the scope of the laboratories accreditation

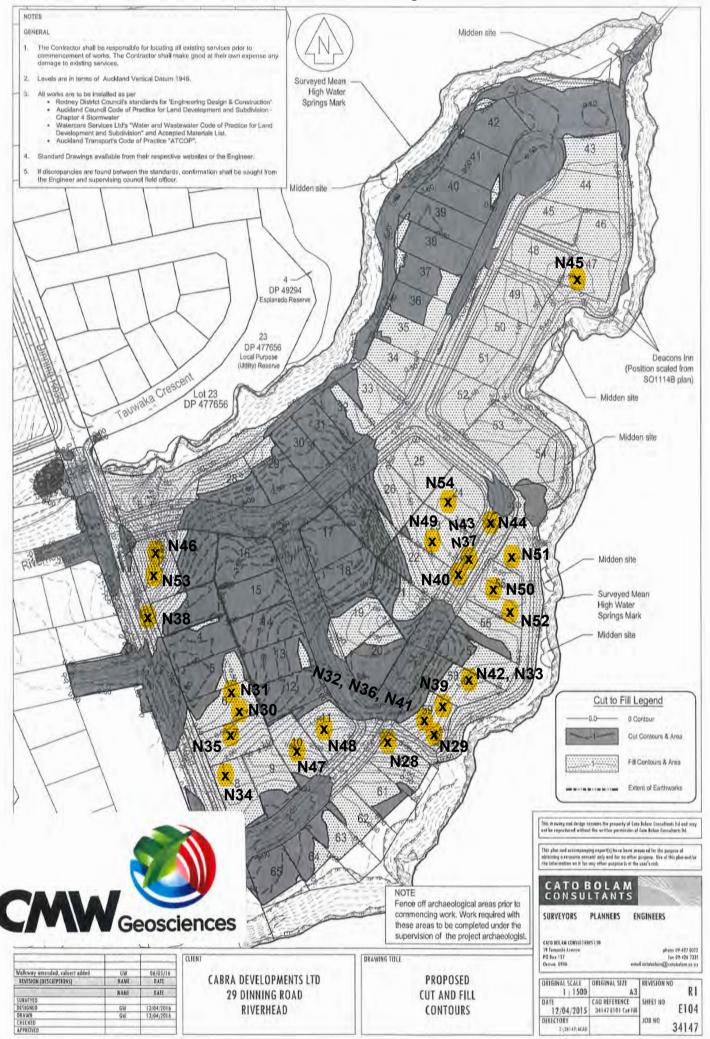
lient Referer	ice:	10 don 1577 Orewa 9540											EDITED LABOR		ratory's accre	litation	3	ccreditation
				li	-situ Va	ne Shear	Strength	is				Field and	Laboratory Te	sting Data				
ate Sampled	Sample No.	pple No. Test Location	Soil Description	Test 1 (kPa)	Test 2 (kPa)	Test 3 (kPa)	Test 4 (kPa)	Ave.	Gauge Wet Density (t/m³)	Gauge Dry Density (t/m³)	Gauge Water Content (%)	Gauge Air Voids (%)	Gauge Probe Depth	Oven Water Content (%)	Solid Density (t/m³)*	Oven Dry Density (t/m³)	Calculated Air Voids (%)*	Comment
2/12/2016	N28	Lot 60	CLAY	178	189	UTP	UTP	184	1.9852	1.6217	22.4	3.50	300	25.0	2.7	1.58	1.5	
	N29	Lot 59	CLAY	165	159	189	UTP	171	1.9678	1.5679	25.5	1.85	300	30.2	2.7	1.52	-1.6	
5/12/2016	N30	Lot 6	CLAY	189	189	>189	>189	>189	1.9432	1.5263	27.3	1.68	250	29.9	2.7	1.50	-0.2	
	N31	Lot 6	CLAY	151	186	189	189	179	1.9223	1.4771	30.8	0.68	200	29.9	2.7	1.48	1.0	
	N32	Lot 59	CLAY	189	148	146	186	167	1.9470	1,5538	25.3	3.04	300	23.2	2.7	1.58	4.8	
	N33	Lot 58	CLAY	162	151	189	189	173	1.8824	1,4506	29.8	3.00	300	29.6	2.7	1.46	3.2	
7/12/2016	N34	Lot 8	Sandy CLAY	162	162	167	151	161	1.9153	1,5425	24.2	5.51	300	24.8	2.7	1.54	5.1	
	N35	Lot 7	Sandy CLAY	UTP	UTP	UTP	UTP	UTP	1.9377	1,5994	21.1	6.86	300	21.8	2.7	1.60	5.4	
	N36	Lot 59	Sandy CLAY	151	159	162	167	160	1.9168	1.5227	25.9	4.10	300	26.8	2.7	1.52	3.5	
	N37	Road between Lot 23 and Lot 55	Sandy CLAY	173	159	143	146	155	1.9195	1.4946	28.4	2.06	300	27.7	2.7	1.50	2.7	
15/12/2016	N38	Refer to site plan	CLAY	UTP	UTP	UTP	UTP	UTP	1,9100	1.5186	25.8	4.53	300	36.7	2.7	1.40	-3.0	
	N39	Lot 59	CLAY	UTP	UTP	UTP	UTP	UTP	1,9302	1.5066	28.1	1.74	300	28.2	2.7	1.50	1,8	
	N40	Refer to site plan	CLAY	173	162	>189	178	>176	1,9091	1.5374	24.2	5.81	300	25.81	2.7	1.52	4.6	
20/12/2016	N41	Lot 59	CLAY	189	178	148	154	167	1.9089	1.5013	27.1	3.55	300	27.1	2.7	1.50	3,7	
	N42	Lot 58	CLAY	189	189	>189	>189	>189	1.8870	1.4821	27.3	4.53	300	28.1	2.7	1.48	4.0	
	N43	Road between Lot 23 and Lot 55	CLAY	UTP	UTP	UTP	UTP	UTP	1.9756	1.5890	24.3	2.40	300	19.9	2.7	1,64	6.2	
	N44	Road SE of lot 24	CLAY	UTP	UTP	UTP	UTP	UTP	1,9289	1.5162	27.2	2.49	300	24.8	2.7	1.54	4.5	
	N45	Lot 47	CLAY	UTP	UTP	UTP	UTP	UTP	1.9287	1.5526	24.2	4.81	300	25.9	2.7	1.54	3.6	
	N46	Lot 1	CLAY	146	146	151	162	151	1.8628	1.3991	33.1	1.71	300	35.2	2.7	1.38	0,5	
22/12/2016	N47	Lot 10	CLAY	189	189	>189	>189	>189	1.8219	1.3367	36,3	1.87	300	38.3	2.7	1.32	0.8	
	N48	Lot 11	CLAY	UTP	UTP	UTP	UTP	UTP	1.8501	1.4081	31.4	3.55	300	33.7	2.7	1.38	2.1	
	N49	Lot 23	CLAY	>189	>189	UTP	UTP	>189	1.9375	1.5395	25,9	3.09	300	24.0	2.7	1.56	4.6	
	N50.	Lot 55	CLAY	UTP	UTP	>189	>189	>189	1.9371	1.5397	25.8	3.15	300	18.3	2.7	1.64	9.4	
30/12/2016	N51	Refer to site plan	CLAY	>194	>194	>194	>194	>194	1.9320	1.5459	25.0	4.06	250	27.3	2.7	1.52	2.3	
	N52	Lot 55	CLAY	>194	>194	>194	>194	>194	1.9141	1.4981	27.8	2.83	200	27.3	2.7	1.50	3.3	
	N53	Lot 1	CLAY	>194	>194	>194	>194	>194	1.9172	1,5182	26.2	3.81	200	30.2	2.7	1.48	1.0	
9/01/2017	N54	Lot 24	CLAY	148	151	162	165	157	1,9105	1.5366	24.3	5.62	250	31.5	2.7	1.46	0.4	

This report should only be reproduced in full.

Created By: TG Checked By: TG

Authorised Signatory:

Date:


Date:

Date:

5/12/2016 11/01/2017 // /0//2017

Page:

1 of 2

29 Dinning Road, Riverhead

AKL2016_0326LAC Rev.0

PO Box 197, Orewa 0946

Cabra Developments Limited

AKL2016_0326

Riverhead

22/08/2017

Project:

Project No:

Report No:

Report Date:

Client Address:

Location:

Client:

LF11 Rev 4 Soil Field Density NDM Direct Transmission with VSS Report

Auckland Laboratory

CMW Geosciences (NZ) Limited

Building C, 9 Piermark Drive, Rosedale, NZ 0632

PO Box 300206, Albany, Auckland, NZ 0752

Phone: +64 (09) 4144 632

Test Methods:

Notes:

NZS 4402.2.1:1986 NZS 4407.4.2.2:2015 Solid Density:

Testing Locations Selected By: C

Assumed CMW Field Staff

NZGS:August 2001

IANZ

Tests indicated as not accredited are outside the scope of the laboratory's accreditation

Measurements marked " are not accredited and are outside the scope of the laboratories accreditation

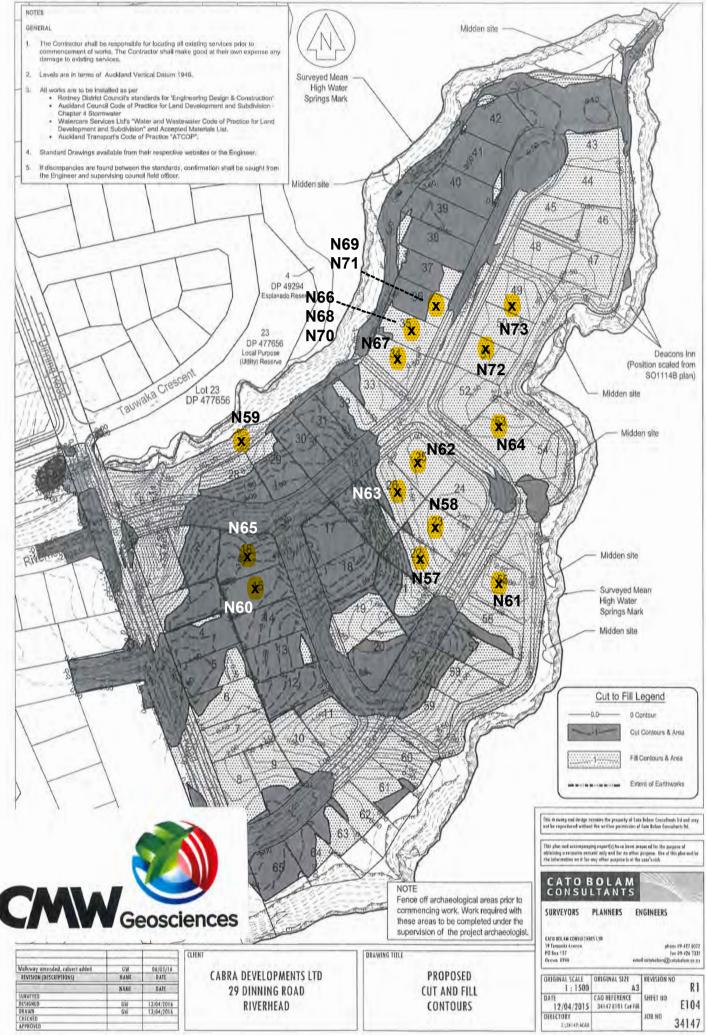
lient Referen											ACCREDITED LABORATORY laboratory's accreditation				ccreditation			
				- In	In-situ Vane Shear Strengths				Field and Laboratory Testing Data									
ate Sampled Sample No.	Test Location	sation Soil Description	Test 1 (kPa)	Test 2 (kPa)	Test 3 (kPa)	Test 4 (kPa)	Ave.	Gauge Wet Density (t/m³)	Gauge Dry Density (t/m³)	Gauge Water Content (%)	Gauge Air Voids (%)	Gauge Probe Depth	Oven Water Content (%)	Solid Density (t/m³) *	Oven Dry Density (t/m³)	Calculated Air Voids (%)	Comments	
9/01/2017	N55	Lot 55	Stabilised CLAY	186	189	>189	>189	>188	1.9690	1.5147	30,0	-1.64	300	21.6	2.7	1.62	5.1	
	N56	Lot 57	CLAY	>189	>189	UTP	UTP	>189	2.0064	1.6191	23.9	1.21	300	22.1	27	1,64	2.8	
16/01/2017	N57	Lot 22	Sandy CLAY	UTP	UTP	UTP	UTP	UTP	1.9170	1.5581	23.0	6.32	300	22.8	2.7	1,56	6.6	
	N58	Lot 23	Sandy CLAY	UTP	UTP	UTP	UTP	UTP	1.9438	1.5680	24.0	4.26	300	21.5	2.7	1.60	6,4	
	N59	Refer to site plan	Sandy CLAY	UTP	UTP	UTP	UTP	UTP	1.8617	1.4583	27.7	5,56	300	24.2	2,7	1.50	8.2	
	N60	Lot 15	CLAY	UTP	UTP	UTP	UTP	UTP	2.0161	1.6339	23.4	1.18	300	23.1	2.7	1.64	1.5	
25/01/2017	N61	Lot 55	CLAY	UTP	UTP	UTP	UTP	UTP	1.8953	1.4799	28.1	3.56	300	25.5	2.7	1,52	5.6	
	N62	Lot 25	CLAY	UTP	UTP	UTP	UTP	UTP	1.9342	1.5275	26.6	2,67	300	26.6	2.7	1.52	2.8	
	N63	Lot 26	CLAY	151	148	165	146	153	1.9638	1.5707	25.0	2.43	300	24.4	2.7	1.58	3.0	
	N64	Lot 53	CLAY	>189	>189	UTP	UTP	>189	2.0054	1,5871	26,4	-0.70	300	26.2	2.7	1.58	-0.5	
	N65	Lot 16	CLAY	>189	>189	UTP	UTP	>189	1.8715	1.4205	31.8	2.19	300	30.2	2.7	1.44	3.4	
23/02/2017	N66	Lot 35	CLAY	>202	161	>202	180	>186	1.9624	1,5396	27.5	3.23	300	25.4	2.7	1.56	2.3	
	N67	Lot 34	CLAY	>202	UTP	>202	>202	>202	1.9672	1.5840	24.2	5.63	300	24.8	2.7	1.58	2.6	
24/02/2017	N68	Lot 35	CLAY	>219	203	>219	197	>210	1.9279	1,5529	24.1	4.90	300	25.5	2.7	1.54	4.0	
	N69	Lot 36	CLAY	>219	188	156	172	>184	1.8431	1.4810	24.5	8.85	300	25.0	2.7	1.48	8.5	
27/02/2017	N70	Lot 35	CLAY	>219	>219	>219	>219	>219	1.9420	1.5675	23.9	4.41	300	27.0	2.7	1.52	2.1	
	N71	Lot 36	CLAY	>219	>219	>219	>219	>219	1.9601	1.5739	24.5	3.00	300	23.3	2.7	1.58	4.0	
26/04/2017	N72	Lot 51	CLAY	>185	158	161	156	>165	1.9305	1.5308	26.1	3.25	300	26.2	2.7	1.52	3.3	
	N73	Lot 49	CLAY	>185	143	>185	158	>168	1.8960	1.4924	27.0	4.27	300	28.1	2.7	1.48	3,6	

This report should only be reproduced in full.

Created By: TG Checked By: TG

Date:

10/01/2017 22/08/2017


Authorised Signatory: Grag S

Date:

23/08/2017

Page:

1 of 2

LF1.4 Rev.7 Dynamic Cone Penetration (DCP) Test Report NZS 4402: Test 6.5.2: 1988

Auckland Laboratory

CMW Geosciences (NZ) Limited

Building C, 9 Piermark Drive, Rosedale, NZ 0632

PO Box 300206, Albany, Auckland, NZ 0752

Report No:

AKL2016_0326LAD Rev. 0

Project Name:

29 Dinning Road

Project Location:

Riverhead

Project Number:

AKL2016_0326

Test Date:

13/01/2017

Tested By:

IMI / MP

Client:

Clier

Clien

Cabra Developments Limited

Testing Locations Selected By:

Phone: +64 (09) 4144 632

Tests indicated as not accredited are outside the scope of the laboratory's accreditation

Equivalent CBR Values are not accredited and are outside the scope of the laboratory's accreditation

CMW Field Staff

ent Address:	ACCREDITED LABO
ent Reference:	

Test No.		1		2		3		4		5	
Test Location	Ro	ad 2	Ro	ad 2	Ro	ad 2	Ro	ad 2	Ro	ad 2	
Chainage & Offset	CH2	0 Left	CH30	0 Right	CH4	0 Left	CHSC	CH50 Right		CH60 Left	
Material & Layer:	CLAY / S	Subgrade	CLAY /	Subgrade	CLAY/S	Subgrade	CLAY / Subgrade		CLAY/	Subgrade	
Depth (mm)	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	
0 - 100	12	20+	8	18	6	13	4	8	11	20+	
100 - 200	6	13	6	13	5	10	4	8	5	10	
200 - 300	6	13	5	10	5	10	4	8	5	10	
300 - 400	5	10	5	10	5	10	3	6	3	6	
400 - 500	4	8	4	8	4	8	2	4	4	8	
500 - 600	5	10	3	6	5	10	2	4	3	6	
600 - 700	2	4	6	13	4	8	2	4	4	8	
700 - 800	4	8	7	15	5	10	4	8	3	6	
800 - 900	3	6	4	8	5	10	4	8	2	4	
900 - 1000											
Test No.		6		7		3		9	10		
Test Location	Roa	ad 2	Ro	ad 2	Roa	rd 2	Road 2		Ros	d 2	
Chainage & Offset	CH70	CH70 Right		0 Left	CH90	CH90 Right		CH100 Left		Right	
Material & Layer:	CLAY / Subgrade		CLAY / S	Subgrade	CLAY / S	CLAY / Subgrade CLAY /		CLAY / Subgrade		ubgrade	
Depth	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	
0 - 100	4	8	8	18	15	20+	10	20+	14	20+	
100 - 200	5	10	3	6	9	20	7	15	7	15	
200 - 300	4	8	2	4	5	10	5	10	7	15	
300 - 400	3	6	2	4	6	13	6	13	6	13	
400 - 500	2	4	2	4	10	20+	7	15	5	10	
500 - 600	2	4	2	4	9	20	5	10	4	8	
600 - 700	2	4	2	4	5	10	5	10	6	13	
700 - 800	2	4	2	4	3	6	11	20+	6	13	
800 - 900		4	2	4	2	4	8	18	7	15	
800 - 900	2	4	4	4	- 4	4	.9	10		15	

Prepared by: Checked by:

IMI

Date:

Date:

17/01/2017

Date:

5/04/2017 5/4/2017

This report should only be reproduced in full

*Equivalent CBR values calculated using AUSTROADS (2010) Guide to Pavement Technology Part 2, Figure 5.3, For Fine Grained Cohesive Soils, and are relevant to fine grained cohesive soils only.

Page 1 of 5

ach Myrell-Johnson

Geosciences

LF14 Rev.7 Dynamic Cone Penetration (DCP) Test Report NZS 4402: Test 6.5.2: 1988

Report No:

AKL2016_0326LAD Rev. 0

Project Name:

29 Dinning Road

Project Location:

Riverhead

Project Number:

AKL2016_0326

Test Date:

13/01/2017

Tested By:

JMJ / MP

Client:

Cabra Developments Limited

Client Address:

Client Reference:

Prepared by:

Checked by:

Authorised Signatory:

IMI

Josh Myrth - Johnson Myrest - Johnson

Auckland Laboratory

CMW Geosciences (NZ) Limited

Building C, 9 Piermark Drive, Rosedale, NZ 0632 PO Box 300206, Albany, Auckland, NZ 0752

Phone: +64 (09) 4144 632

Testing Locations Selected By:

CMW Field Staff

This report should only be reproduced in full

*Equivalent CBR values calculated using AUSTROADS (2010) Guide to Pavement Technology Part 2, Figure 5.3, For Fine Grained Cohesive Solls, and are relevant to fine grained cohesive solls only.

Page 2 of 5

fests indicated as not accredited are outside the scope of the laboratory's accreditation

Equivalent CBR Values are not accredited and are outside the scope of the laboratory's accreditation

Client Reference:											
Test No.	1	i	1	.2	1	3	1	4		5	
Test Location	Roa	nd 2	Ros	nd 2	Roa	ad 2	Ros	Road 2		ad 2	
Chainage & Offset	CH12	O Left	CH136	CH130 Right		IO Left	CH150 Right		CH16	0 Left	
Material & Layer:	Clay / S	ubgrade	CLAY / S	ubgrade	CLAY / S	Subgrade	CLAY / S	ubgrade	CLAY/S	ubgrade	
Depth (mm)	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	
0 - 100	17	20+	14	20+	5	10	15	20+	10	20+	
100 - 200	14	20+	8	18	6	13	5	10	3	6	
200 - 300	10	20+	6	13	3	6	3	6	2	4	
300 - 400	6	13	4	8	3	6	2	4	3	6	
400 - 500	6	13	4	8	2	4	3	6	2	4	
500 - 600	4	8	2	4	3	6	3	6	3	6	
600 - 700	4	8	2	4	2	4	2	4	2	4	
700 - 800	4	8	2	4	2	4	3	6	2	4	
800 - 900	4	8	2	4	2	4	2	4	2	4	
900 - 1000									100		
Test No.	1	.6		17	1	18		.9		20	
Test Location	Ros	nd 2	Ro	ad 2	Ro	ad 2	Ros	ad 2	Ro	ad 2	
Chainage & Offset	CH176) Right	CH18	80 Left	CH19	0 Right	CH200 Left		CH21	O Right	
Material & Layer:	CLAY / S	lubgrade	CLAY / S	Subgrade	CLAY / S	Subgrade	CLAY / S	Subgrade	CLAY/	Y / Subgrade	
Depth	Blow Count	Equiv CBR*	Blow Count	Equiv CBR+	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	
0 - 100	3	6	3	6	8	18	9	20	15	20+	
100 - 200	1	2	1	2	3	6	5	10	6	13	
200 - 300	1	2	1	2	2	4	4	8	4	8	
300 - 400	2	4	2	4	1	2	4	8	2	4	
400 - 500	1	2	2	4	2	4	3	6	3	6	
500 - 600	2	4	2	4	2	4	4	8	2	4	
600 - 700	1	2	2	4	1	2	1	2	2	4	
700 - 800	1	2	2	4	2	4	2	4	2	4	
800 - 900	2	4	2	.4	2	4	2	4	2	4	
900 - 1000											

Date:

Date:

17/01/2017

5/04/2017

5/4/2017

LF14 Rov.7 Dynamic Cone Penetration (DCP) Test Report NZ5 4402: Test 6.5.2: 1988 AK12016_0326LAD Rev. 0 Auckland Laboratory 29 Dinning Road Project Name: CMW Geosciences (NZ) Limited Building C, 9 Piermark Drive, Rosedale, NZ 0632 Project Location: Riverhead PO Box 300206, Albany, Auckland, NZ 0752 Phone: +64 (09) 4144 632 Project Number: AKL2016_0326 13/01/2017 Test Date: Testing Locations Selected By: CMW Field Staff Tested By: IMI / MP Tests indicated as not accredited are outside the scope of the laboratory's accreditation Client: Cabra Developments Limited Equivalent CBR Values are not accredited and are outside the scope of the Client Address: laboratory's accreditation Client Reference: Test No. 21 22 23 25 Test Location Road 2 Road 2 Road 2 Road 2 Road 2 Chainage & Offset CH220 Left CH230 Right CH240 Left CH250 Right CH260 Left Material & Layer: Clay / Subgrade Depth (mm) Blow Count Equiv CBR* 0 - 100 8 18 6 13 6 13 3 6 100 - 200 5 10 4 4 8 10 8 200 - 300 5 10 4 2 4 1 2 15 300 - 400 4 8 3 1 2 2 4 400 - 500 4 8 3 6 1 2 1 2 1 2 500 - 600 3 6 3 6 2 4 600 - 700 4 8 4 8 1 2 1 2 2 700 - 800 4 8 3 6 1 5 1 2 800 - 900 4 8 2 4 2 4 2 4 2 4 900 - 1000 Test No. 26 27 28 29 30 Test Location Road 2 Road 2 Road 2 Road 2 Road 2 Chainage & Offset CH270 Right CH280 Left CH290 Right CH300 Left CH310 Right CLAY / Subgrade Material & Layer: CLAY / Subgrade CLAY / Subgrade CLAY / Subgrade CLAY / Subgrade Depth Blow Count Equiv CBR* 0 - 100 10 204 13 20+ 6 13 4 100 - 200 5 9 10 15 4 8 200 - 300 4 8 5 10 4 8 3 6 300 - 400 3 6 4 8 4 8 7 15 400 - 500 4 6 4 g 6 13 500 - 600 1 2 4 3 6 2 4 600 - 700 2 4 2 3 6 2 4 700 - 800 2 4 2 4 2 2 4 800 - 900 2 4 2 4 2 2 900 - 1000 This report should only be reproduced in full Prepared by: *Equivalent CBR values calculated using AUSTROADS (2010) Guide to Pavement Technology Part 2, Figure 5.3, For Fine Grained Cohesive Soils, and Date: 17/01/2017 Lad Myself - John Date Myself - JOHNSON Date: are relevant to fine grained cohesive soils only. 5/04/2017 Authorised Signatory: 5/4/2017 Page 3 of 5

LF14 Rev.7 Dynamic Cone Penetration (DCP) Test Report NZS 4402; Test 6.5.2; 1988 AKL2016_0326LAD Rev. 0 Report No: Auckland Laboratory Project Name: 29 Dinning Road CMW Geosciences (NZ) Limited Building C, 9 Piermark Drive, Rosedale, NZ 0632 Project Location: Riverhead PO Box 300206, Albany, Auckland, NZ 0752 Phone: +64 (09) 4144 632 AKL2016_0326 Project Number: Test Date: 13/01/2017 Testing Locations Selected By: CMW Field Staff Tested By: JM1/MP Tests indicated as not accredited are outside the scope of the laboratory's accreditation Cabra Developments Limited Client: Equivalent CBR Values are not accredited and are outside the scope of the Client Address: laboratory's accreditation Client Reference: Test No. Road 2 Road 2 Test Location CH320 Left CH330 Right Chainage & Offset Clay / Subgrade CLAY / Subgrade Material & Laver: Depth (mm) Blow Count Equiv CBR* 0-100 Б 13 8 100 - 200 1 20 2 4 20 500 - 600 4 13 600 - 700 2 4 4 8 700 - 800 2 800 - 900 2 4 2 4 900 - 1000 Test No. Test Location Chainage & Offset Material & Layer: Depth Blow Count Equiv CBR* Blow Count Equiv CBR* Blow Count Equiv CBR* Blow Count Equiv CBR* Blow Count Equiv CBR*

0 - 100 100 - 200 200 - 300 300 - 400 400 - 500 500 - 600 600 - 700 800 - 900 900 - 1000

Prepared by:

Date:

17/01/2017

Authorised Signatory: Jad Mynth - Janes Mynth - Johnson

5/04/2017 5/4/2017 This report should only be reproduced in full

*Equivalent CBR values calculated using AUSTROADS (2010) Guide to Pavernent Technology Part 2, Figure 5.3, For Fine Grained Cohesive Soils, and are relevant to fine grained cohesive soils only.

Page 4 of 5

	- N		CLIE
REVISION (DESCRIPTIONS)	NAME	DATE	
SURVEYED		I	
	GW	08/04/16	
DESIGNED	GW GW	08/04/16 08/04/16	
SURVEYED DESIGNED DRAWN CHECKED			

CABRA DEVELOPMENTS LTD 29 DINNING ROAD RIVERHEAD ROAD LAYOUT

DRAWING TITLE

Orews 0946	emo	il cotobolom@c	otobolam.co.nz
ORIGINAL SCALE 1:1500	ORIGINAL SIZE	REVISION N	0
DATE 08/04/2016	CAD REFERENCE 34147 E200 Roading	SHEET NO	E200
DIRECTORY Z:\34147\ACAD		108 40	34147

LF34 Rev.7 Dynamic Cone Penetration (DCP) Test Report NZS 4402: Test 6.5.2: 1988

Auckland Laboratory

Report No:

AKL2016 0326LAE Rev. 0

Project Name:

29 Dinning Road

Project Location:

Project Number:

AKL2016_0326

Test Date:

16/01/2017

Tested By:

imi

Client:

Eabre Developments Limited

Client Address:

Testing Locations Selected By:

Phone: +64 (09) 4144 632

CMW Geosciences (NZ) Limited

Building C, 9 Piermark Drive, Rosedale, NZ 0632 PO Box 300206, Albany, Auckland, NZ 0752

CMW Field Staff

Tests indicated as not accredited are outside the scopa of the laboratory's accreditation

Equivalent CBR Values are not accredited and are outside the scope of the laboratory's accreditation

Client Reference:

SW 2(62) M St SA 100 A 21										
Test No.		1		2		3		4		s
Test Location	Ro	ad 1	Ro	ad 1	Ro	ad 1	Ro	ad 1	Ro	ad 1
Chainage & Offset	CH1	CH10 Left		CH20 Right		0 Left	CH40 Right		CHS	0 Left
Material & Layer:	CLAY/S	Subgrade	CLAY/	Subgrade	CLAY / S	Subgrade	CLAY/	Subgrade	CLAY / S	Subgrade
Depth (mm)	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR
0 - 100	9	20	7	15	11	20+	8	18	6	13
100 - 200	10	20+	5	10	7	15	7	15	6	13
200 - 300	7	15	3	6	4	8	4	8	3	6
300 - 400	б	13	4	8	6	13	3	6	3	6
400 ~ 500	6	13	4	8	3	6	2	4	4	8
500 - 600	5	10	3	6	9	10	3	6	. 3	6
600 - 700	5	10	4	8	2	4	3	6	4	8
700 - 800	6	13	2	4	2	4	2	4	.3	6
800 - 900	6	13	2	4	2	4	3	6	4	8
900 - 1000										
Test No.		5		7.		8	1	9		10
Test Location	Ros	rd 1	Ros	ad 1	Ros	ad 1	Road 1		Ros	ad 1
Chainage & Offset	CH60	CH60 Right		CH70 Left		Right	CH90 Left		CH10	0 Right
Material & Layer:	CLAY / Subgrade		CLAY / S	CLAY / Subgrade		CLAY / Subgrade CLAY / Su		CLAY / Subgrade		Subgrade
Depth	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*
0 - 100	5	10	11	20+	1	2	4	8	3	6
100 - 200	4	8	7	15	2	4	4	8	6	13
200 - 300	2	4	6	13	3	6	4	8	4	8
300 - 400	3	6	5	10	3	5	4	8	2	4
400 - 500	2	4	2	4	3	6	4	8	2	4
500 - 600	3	6	4	8	3	6	4	8	3	6
600 - 700	5	10	2	4	4	8	3	6	2	4
700 - 800	4	8	2	4	3	6	2	4	3	6
800 - 900	4	8	2	4	3	6	3	6	4	8
900 - 1000										

Prepared by:

Date:

17/01/2017

LAN Myself- Johnson Date:

JANN MYNETT-JOHNSON Checked by: Authorised Signatory:

5/04/2017

5/4/2017

This report should only be reproduced in full

*Equivalent CBR values calculated using AUSTROADS (2010) Guide to Pavement Technology Part 2, Figure 5.3, For Fine Grained Cohesive Soils, and are relevant to fine grained cohesive soils only.

LE14 Rev.7 Dynamic Cone Penetration (DCP) Test Report

NZS 4402: Test 6.5.2: 1988

Report No:

AKL2016_0326LAE Rev. 0

Project Name:

29 Dinning Road

Project Location:

Riverhead

Project Number:

AKL2016_0326

Test Date:

16/01/2017

Tested By:

LML

Client:

Cabra Developments Limited

Client Address:

Client Reference:

Auckland Laboratory

CMW Geosciences (NZ) Limited

Building C, 9 Piermark Drive, Rosedale, NZ 0632 PO Box 300206, Albany, Auckland, NZ 0752

Phone: +64 (09) 4144 632

Testing Locations Selected By:

CMW Field Staff

Tests indicated as not accredited are outside the scope of the laboratory's accreditation

Equivalent CBR Values are not accredited and are outside the scope of the laboratory's accreditation

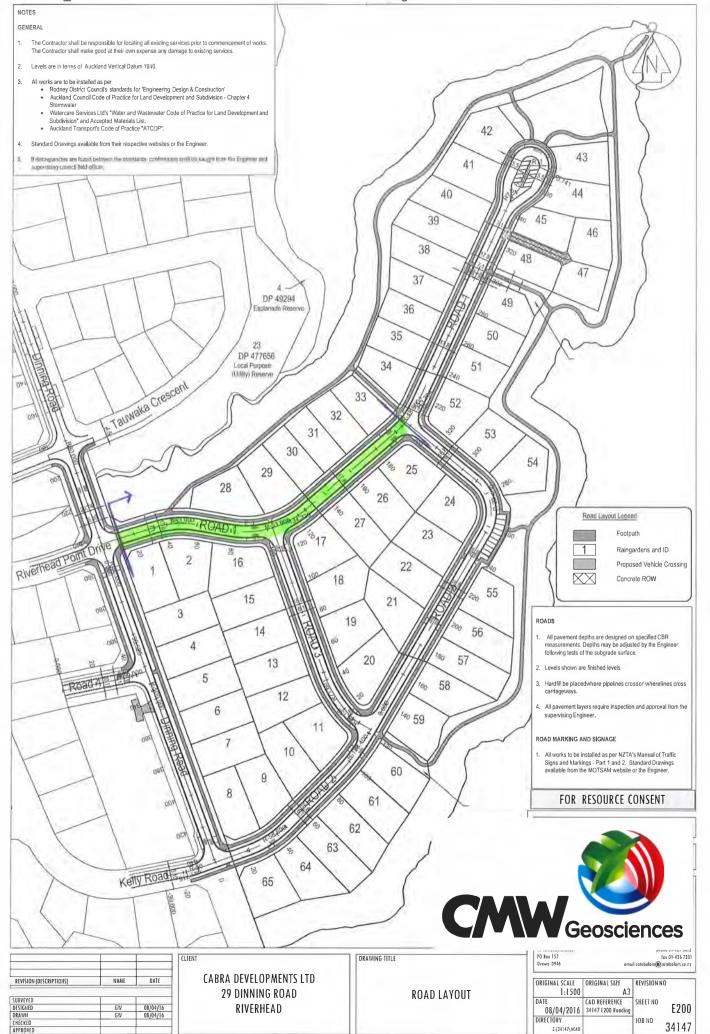
Test No.	1	1	12			3	14			.5
Test Location	Ros	ad 1	Ro	ad 1	Ros	ad 1	Ros	ad 1	Ro	nd 1
Chainage & Offset	CH11	O Left	CH12	0 Right	CH13	0 Left	CH140) Right	CH15	0 Left
Material & Layer:	CLAY / S	ubgrade	CLAY / S	Subgrade	CLAY / S	iubgrade	CLAY / S	ubgrade	CLAY / S	ubgrade
Depth (mm)	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*
0 - 100	10	20+	0	ó	7	15	4	8	1	2
100 - 200	9	20	0	0	5	10	4	8	1	2
200 - 300	5	10	1	2	6	13	5	10	1	2
300 - 400	3	6	0	0	6	13	4	8	0	0
400 - 500	2	4	3	6	5	10	3	6	1	2
500 - 600	2	4	4	8	4	8	1	2	0	0
600 - 700	2	4	3	6	3	6	1	2	1	2
700 - 800	3	б	2	4	4	8	0	0	i	2
800 - 900	2	4	2	4	4	8	1	2	2	4
900 - 1000								U = U		
Test No.	1	6	1	17	1	8	1	.9	20	
Test Location	Ros	nd 1	Road 1		Road 1		Ros	id i	Road 1	
Chainage & Offset	CH160	Right	CH170 Left		CH180 Right		CH190 Left		CH200 Right	
Material & Layer:	CLAY / Subgrade		CLAY / Subgrade		CLAY / S	CLAY / Subgrade CLAY / Sub		CLAY / Subgrade		ubgrade
Depth	Blow Count	Equity CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*
0 - 100	7	15	7	15	5	10	12	20+	10	20+
100 - 200	3	6	4	8	8	18	10+	20+	6	13
200 - 300	2	4	2	4	4	8	1 1		17+	20+
300 - 400	2	4	3	6	4	8				
400 - 500	2	4	3	6	1	2				
500 - 600	3	6	4	8	1	2				
600 - 700	2	4	3	6	1	2				
		A	3	6	1	2				
700 - 800	2	4								
700 - 800 800 - 900	2	4	3	6	2	4				

Prepared by: Checked by:

Authorised Signatory:

IMI

Date:


17/01/2017

5/04/2017

Date: Date:

5/4/2017

*Equivalent CBR values calculated using AUSTROADS (2010) Guide to Pavement Technology Part 2, Figure 5.3, For Fine Grained Cohesive Soils, and are relevant to fine grained cohesive soils only.

LF14 Rev.7 Dynamic Cone Penetration (DCP) Test Report NZS 4402: Test 6.5.2: 1988

Report No:

AKL2016_0326LAF Rev. 0

Project Name:

29 Dinning Road

Project Location:

Project Number:

AKL2016_0326

Test Date:

16/01/2017

Tested By:

Client:

Cabra Developments Limited

Client Address; Client Reference:

Auckland Laboratory

CMW Geosciences (N2) Limited Building C, 9 Piermark Drive, Rosedale, NZ 0632 PO Box 300206, Albany, Auckland, NZ 0752

Phone: +64 (09) 4144 632

Testing Locations Selected By:

CMW Field Staff

Equivalent CBR Values are not accredited and are outside the scope of the laboratory's accreditation

									1	
Test No.		1		2		3		4		5
Test Location	Dinnir	ng Road	Dinnin	ng Road	Dinnin	ig Road	Dinnir	ng Road	Dinnir	g Road
Chainage & Offset	CH26	50 Left	CH27	0 Right	CH28	O Left	CH29	O Right	CH300 Left	
Material & Layer:	CLAY / S	Subgrade	CLAY /	Subgrade	CLAY / S	Subgrade	CLAY / Subgrade		CLAY / S	Subgrade
Depth (mm)	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*
0 - 100	4	8	9	20	8	18	9	20	10	20+
100 - 200	3	6	5	io	6	13	8	18	10+	20+
200 - 300	3	6	4	8	2	4	8	18		7
300 - 400	3	6	4	g	2	4	9	20		
400 - 500	3	6	4	8	4	8	6	13		
500 - 600	4	8	2	4	7	15	6	13	1	
600 - 700	4	8	3	6	5	10	4	8		
700 - 800	4	8	3	6	5	10	2	4		
800 - 900	4	8	4	8	6	13	2	4		
900 - 1000										
Test No.		6		7		8		9	10	
Test Location	Dinnin	g Road	Dinnin	g Road	Dinnin	g Road	Dinnin	g Road	Dinnin	g Road
Chainage & Offset	CH31	0 Right	CH32	:0 Left	CH330	Right	CH340 Left		CH350	0 Right
Material & Layer:	CLAY / S	iubgrade	CLAY / S	Subgrade	CLAY / S	CLAY / Subgrade		CLAY / Subgrade		iubgrade
Depth	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*
0 - 100	7	15	7	15	10	20+	10+	20+	12	20+
100 - 200	4	В	5	10	6	13			8	18
200 - 300	3	5	4	8	5	10			4	8
300 - 400	3	6	3	6	4	8			3	6
400 - 500	4	8	4	8	5	10			4	8
500 - 600	4	8	4	8	4	8			3	6
	- 1 - 1 - 1	8	2	4	3	6			2	4
600 - 700	4									
600 - 700 700 - 800	4	8	3	6	2	4			2	4
	-		3 2	6 4	1	2			2	4

Prepared by: Checked by:

Date:

17/01/2017

Date:

5/04/2017 5/4/2017

*Equivalent CBR values calculated using AUSTROADS (2010) Guide to

Pavement Technology Part 2, Figure 5.3, For Fine Grained Cohesive Soils, and are relevant to fine grained cohesive soils only.

Authorised Signatory: Thek MYLETT-JOHASON

Report No:

AKL2016_0326LAF Rev. 0

Project Name:

29 Dinning Road

Project Location:

Project Number:

AKL2016_0326

Test Date:

16/01/2017

Tested By:

Client:

Cabra Developments Limited

Client Address:

Client Reference:

Auckland Laboratory

CMW Geosciences (NZ) Limited

Building C, 9 Piermark Drive, Rosedale, NZ 0632

PO Box 300206, Albany, Auckland, NZ 0752

Phone: +64 (09) 4144 632

Testing Locations Selected By:

CMW Field Staff

Tests indicated as not accredited are outside the scope of the laboratory's accreditation

Equivalent CBR Values are not accredited and are outside the scope of the laboratory's accreditation

23.215.221.2221.22					La dia						
Test No.	11		1	12 13				14	15		
Test Location	Dinnin	ng Road	Dinning Road		Dinning Road		Dinning Road		Dinning Road		
Chainage & Offset	CH36	io Left	CH37	O Right	СНЗ8	O Left	CH39	Ó Right	CH40	00 Left	
Material & Layer:	CLAY / S	Subgrade	CLAY / S	ubgrade	CLAY / S	Subgrade	CLAY / S	Subgrade	CLAY/	Subgrade	
Depth (mm)	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR	
0 - 100	10	20+	9	20	7	15	6	13	14	20+	
100 - 200	11	20+	6	13	7	15	7	15	6	4	
200 - 300	11	20+	3	6	9	20	4	8	2	4	
300 - 400	8	18	2	4	7	15	2	4	2	4	
400 - 500	7	15	2	4	5	10	3	6	2	4	
500 - 600	4	8	5	10	3	6	2	4	2	4	
600 - 700	5	10	5	10	3	6	2	4	2	4	
700 - 800	6	13	5	10	2	4	2	4	2	4	
800 - 900	6	13	4	8	2	4	2	4	2	4	
900 - 1000											
Test No.	1	.6	1	7							
Test Location	Dinnin	g Road	Dinnin	g Road							
Chainage & Offset	CH410	O Right	CH42	0 Left							
Material & Layer:	CLAY/S	Subgrade	CLAY / S	ubgrade							
Depth	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR	
0-100	7	15	4	8							
100 - 200	9	20	7	15							
200 - 300	4	8	6	13							
300 - 400	4	8	3	6							
400 - 500	3	6	2	4							
500 - 600	3	6	3	6							
600 - 700	2	4	2	4							
700 - 800	2	4	2	4							
800 - 900	2	4	2	4							

Prepared by: Checked by:

IMI

Date:

17/01/2017

5/04/2017 5/4/2017

*Equivalent CBR values calculated using AUSTROADS (2010) Guide to Pavement Technology Part 2, Figure 5.3, For Fine Grained Cohesive Soils, and are relevant to fine grained cohesive soils only.

Page 2 of 3

JACK MYVETT-JOHNSON Authorised Signatory:

29 DINNING ROAD

RIVERHEAD

08/04/2016	SHEET NO	E200		
IRECTORY 2:\34147\ACAD	JOB NO	34147		

ROAD LAYOUT

Auckland Laboratory

CMW Geosciences (NZ) Limited

Building C, 9 Piermark Drive, Rosedale, NZ 0632

PO Box 300206, Albany, Auckland, NZ 0752

Report No:

AKL2016_0326LAG Rev.0

Project Name:

29 Dinning Road

Project Location:

Riverhead

Project Number:

AKL2016_0326

Test Date:

3/02/2017

Tested By:

Client:

AP / JMJ

Client Address:

Cabra Developments Limited

Phone: +64 (09) 4144 632

Testing Locations Selected By:

Tests indicated as not accredited are outside the scope of the laboratory's accreditation

Equivalent CBR Values are not accredited and are outside the scope of the laboratory's accreditation

CMW Field Staff

Client Reference:

Strate Hayaranage										
Test No.		1 2 3 4		5						
Test Location	Ros	Road 3		ad 3	Ros	ad 3	Road 3		Ro	ad 3
Chainage & Offset	CH1	0 Left	CH2C	Right	СНЗ	0 Left	CH40	Right	CHS	0 Left
Material & Layer:	CL	ΑŸ	CI	_AY	CL	ΑY	CL	AY	C	AY
Depth (mm)	Blow Count	Equiv CBR*	Blow Count	Equiv CBR=						
0 - 100	14	20+	6	13	7	15	10	20+	17	20+
100 - 200	7	15	5	10	5	10	5	10	6	13
200 - 300	6	13	3	6	4	8	3	6	5	10
300 - 400	3	6	3	6	3	6	3	6	3	6
400 - 500	2	4	3	6	2	4	3	6	3	6
500 - 600	2	4	3	6	3	6	2	4	2	4
600 - 700	2	4	2	4	1	2	2	4	3	6
700 - 800	2	4	3	6	2	4	2	4	3	6
800 - 900	4	8	2	4	2	4	2	4	2	4
900 - 1000	2	4	3	6	3	6	2	4	2	4
Test No.		6		7	1	8		9		10
Test Location	Roa	ad 3	Ros	ad 3	Ros	ad 3	Roa	nd 3	Ro	ad 3
Chainage & Offset	CH60	Right	CH7	0 Left	CH80	Right .	CH90 Left		CH10	0 Right
Material & Layer:	CL	AY	cı	AY	CL	CLAY		CLAY		AY.
Depth	Blow Count	Equiv CBR*								
0 - 100	12	20+	6	13	4	B	3	6	3	6
100 - 200	7	15	3	6	2	4	4	8	5	10
200 - 300	3	6	2	4	1	2	5	10	3	6
300 - 400	13	6	2	4	2	4	7	15	3	6
400 - 500	5	10	2	4	2	4	6	13	2	4
500 - 600	UTP	UTP	1	2	2	4	9	20	3	6
600 - 700			2	4	2	4	10	20+	5	10
700 - 800			2	4	2	4	11	20+	13+	20+
800 - 900			3	6	3	6	10	20+	UTP	UTP
900 - 1000			2	4	4	8	10	20+		

Prepared by:

Authorised Signatory:

Cin

Date:

7/02/2017

7/02/2017

7/2/2017

Date:

This report should only be reproduced in full

*Equivalent CBR values calculated using AUSTROADS (2010) Guide to Pavement Technology Part 2, Figure 5.3, For Fine Grained Cohesive Soils, and are relevant to fine grained cohesive soils only.

Auckland Laboratory

CMW Geosciences (NZ) Limited

Phone: +64 (09) 4144 632

Testing Locations Selected By:

Building C, 9 Piermark Drive, Rosedale, NZ 0632

PO Box 300206, Albany, Auckland, NZ 0752

Report No:

AKL2016_0326LAG Rev.0

Project Name:

29 Dinning Road

Project Location:

Project Number:

AKL2016_0326

Test Date:

3/02/2017

Tested By:

AP / JMJ

Client Address:

Prepared by:

Checked by:

Authorised Signatory: 🕡

TG

CS

Client Reference:

Client:

Cabra Developments Limited

Tests indicated as not accredited are outside the scope of the laboratory's accreditation

*Equivalent CBR values calculated using AUSTROADS (2010) Guide to Pavement Technology Part 2, Figure 5.3, For Fine Grained Cohesive Soils, and are relevant to fine grained cohesive soils only.

Page 2 of 4

Equivalent CBR Values are not accredited and are outside the scope of the laboratory's accreditation

CMW Field Staff

PUSHLICHER PROPERTY										
Test No.		11		12	1	1.3	14		15	
Test Location	Ro	ad 3	Ro	ad 3	Ros	ad 1	Ro	Road 1		ad 1
Chainage & Offset	CH1	O Left	CH12	0 Right	CH21	O Left	CH22	O Right	CH23	0 Left
Material & Layer:	C	АУ	C	LAY	CI	AY	CI CI	AY	Ci	AY
Depth (mm)	Blow Count	Equiv CBR*	Blow Count	Equiv CBR						
0 - 100	4	g	5	10	5	10	9	20	7	15
100 - 200	2	4	3	6	5	10	7	15	6	13
200 - 300	3.	6	5	10	2	4	6	13	3	6
300 - 400	3	- 6	4	8	1	2	3	6	2	4
400 - 500	4	8	3	6	1	2	2	4	2	4
500 - 600	6	13	4	8	2	4	2	4	1	2
600 - 700	7	15	4	8	2	4	2	4	2	4
700 - 800	6	13	4	8	2	4	2	4	1	2
800 - 900	10	20+	5	10	2	4	1	2	2	4
900 - 1000	10	20+	5	10	2	4	2	4	2	4
l'est No.	1	6	-	17	1	.8	d	9	2	0
Test Location	Ro	id 1	Ro	ad 1	Roz	ad 1	Ros	nd 1	Ros	nd 1
Chainage & Offset	CH24	O Right	CH25	io Left	CH260) Right	CH270 Left		CH280 Right	
Material & Layer:	CI	AY	CI	AY	CL	CLAY		CLAY CLAY		AY
Depth	Blow Count	Equiv CBR*	Blow Count	Equiv CBR						
0 - 100	10	20+	7	15	10	20+	11	20+	6	13
100 - 200	11	20+	7	15	11	20+	7	15	7	15
200 - 300	7	15	4	8	8	18	8	18	5	10
300 - 400	8	18	5	10	4	8	5	10	4	8
400 - 500	3	6	2	4	4	8	3	6	5	10
500 - 600	3	6	2	4	4	8	2	4	3	6
600 - 700	2	4	2	4	4	8	3	6	2	4
			2	4	2	4	2	4	2	4
700 - 800	2	4								
700 - 800 800 - 900	2	4	2	4	2	4	2	4	2	4

7/02/2017

7/02/2017

7/2/2017

Date:

Date:

Date:

Report No:

AKL2016_0326LAG Rev.0

Project Name:

29 Dinning Road

Project Location:

Riverhead

Project Number:

AKL2016_0326

Test Date:

3/02/2017

Tested By: Client:

AP/JMJ

Prepared by:

Checked by:

Authorised Signatory:

TG

Cabra Developments Limited

Client Address:

Client Reference:

Auckland Laboratory

CMW Geosciences (NZ) Limited

Building C, 9 Piermark Drive, Rosedale, NZ 0632

PO Box 300206, Albany, Auckland, NZ 0752 Phone: +64 (09) 4144 632

Testing Locations Selected By:

CMW Field Staff

Tests indicated as not accredited are outside the scope of the laboratory's accreditation.

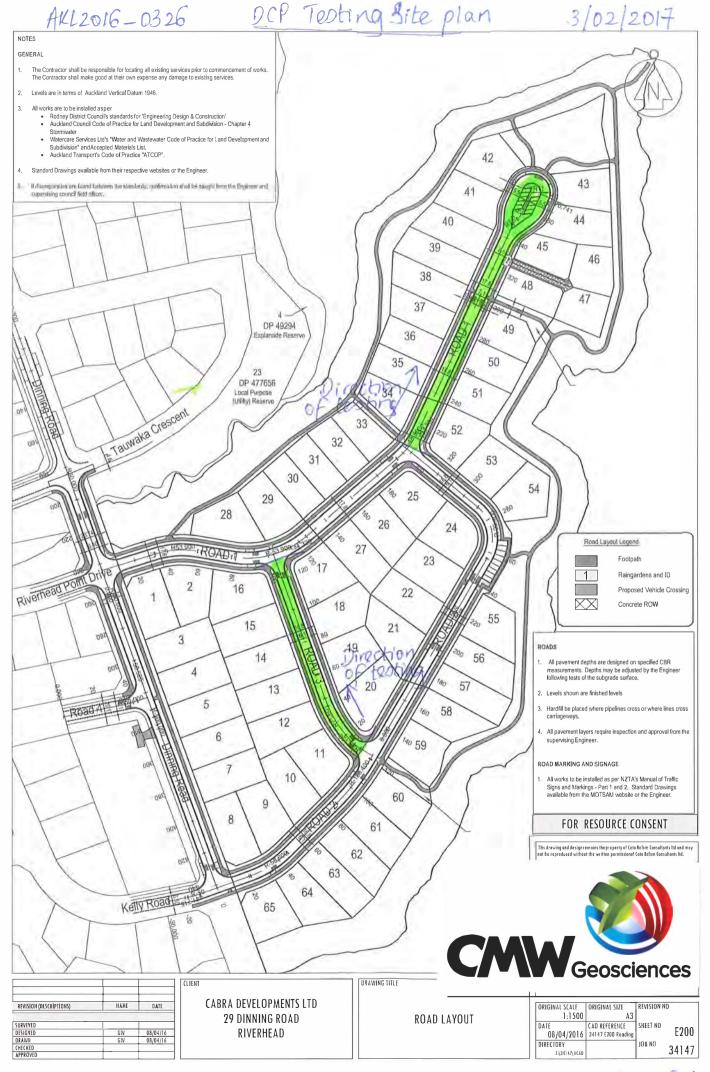
*Equivalent CBR values calculated using AUSTROADS (2010) Guide to Pavernent Technology Part 2, Figure 5.3, For Fine Grained Cohesive Soils, and are relevant to fine grained cohesive soils only.

Page 3 of 4

Equivalent CBR Values are not accredited and are outside the scope of the laboratory's accreditation

Test No.	21 22		2	.3		24	25			
Test Location	Ro	ad 1	Road 1		Road 1		Road 1		Road 1	
Chainage & Offset	CH25	00 Left	СНЗО	0 Right	CH31	0 Left	CH32	0 Right	CH330 Left	
Material & Layer:	C	AY	CI	LAY	CL	AY	c	AY	CI	.AY
Depth (mm)	Blow Count	Equiv CBR*	Blow Count	Equiv CBR						
0 - 100	7	15	6	13	6	13	2	4	3	6
100 - 200	7	15	7	15	5	10	6	13	2	4
200 - 300	6	13	5	10	6	13	5	10	1	2
300 - 400	3	6	8	18	4	8	5	10	1	2
400 - 500	3	6	7	15	4	8	2	4	2	4
500 - 600	2	4	3	6	3	6	3	6	2	4
600 - 700	1	2	3	6	2	4	3	6	2	4
700 - 800	1	2	3	6	3	6	3	6	1	2
800 - 900	2	4	2	4	3	6	2	4	2	4
900 - 1000	2	4	2	4	2	4	2	4	2	4
Test No.	2	16	2	27						
Fest Location	Ros	ad 1	Ros	ad 1						
Chainage & Offset	CH340	O Right	CH36	0 Right						
Material & Layer:	CL	AY	CL	AY						
Depth	Blow Count	Equiv CBR*								
0 - 100	5	10	4	8						
100 - 200	2	4	4	8						
200 - 300	3	6	4	8						
300 - 400	2	4	2	4						
400 - 500	2	4	3	6						
500 - 600	2	4	2	4						
600 - 700	2	4	2	4						
700 - 800	2	4	2	4				1 7 1		
800 - 900	1	2	2	4						

7/02/2017


7/02/2017

7/2/207

Date:

Date:

Date:

Report No:

AKL2016_0326LAH Rev.D

Project Name:

29 Dinning Road

Project Location:

Riverhead

Project Number:

AKL2016_0326

Test Date:

15/03/2017

Tested By:

Client:

Cabra Developments Limited

Client Address:

Client Reference:

Auckland Laboratory

CMW Geosciences (NZ) Limited

Building C, 9 Piermark Drive, Rosedale, NZ 0632 PO Box 300206, Albany, Auckland, NZ 0752

Phone: +64 (09) 4144 632

Testing Locations Selected By:

CMW Field Staff

Tests indicated as not accredited are outside the scope of the laboratory's accreditation

Equivalent CBR Values are not accredited and are outside the scope of the laboratory's accreditation

Test No.		1	2 3 4		5					
Test Location	Ro	ad 2	Ros	ad 2	Roa	ad 2	Road 2		Road 2	
Chainage & Offset	CH24	0 Right	CH24	5 Left	CH250	O Right	CH25	55 Left	CH260 Right	
Material & Layer;	CLAY/S	Subgrade	CLAY / S	Subgrade	CLAY / S	Subgrade	CLAY /	Subgrade	CLAY / S	Subgrade
Depth (mm)	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*
0 - 100	10	20+	4	8	6	13	4	В	2	4
100 - 200	5	10	3	6	5	10	2	4	2	4
200 - 300	11	20+	2	4	4	8	2	4	3	6
300 - 400	14	20+	3	6	2	4	2	4	3	6
400 - 500	8	18	2	4	2	4	2	4	2	4
500 - 600	8	18	4	8	4	8	2	4	3	6
600 - 700	8	18	6	13	2	4	3	6	3	6
700 - 800	8	18	4	8	3	6	3	6	3	6
800 - 900	8	18	4	8	3	6	3	6	4	8
900 - 1000										
Test No.		6		7		8		9	1	.0
Test Location	Ro	ad 2	Ros	nd 2	Ros	ad 2	Ro	ad 2	Ro	ad 2
Chainage & Offset	CH26	is Left	CH27	O Right	CH27	5 Left	CH280 Right		CH32	O Left
Material & Layer:	CLAY / S	Subgrade	CLAY/S	ubgrade	CLAY / S	ubgrade	CLAY / Subgrade		CLAY / Subgrade	
Depth	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*
0 - 100	2	4	5	10	4	8	7	15	6	13
100 - 200	3	6	3	6	2	4	3	6	4	8
200 - 300	5	10	2	4	3	6	4	8	3	6
300 - 400	3	6	4	8	3	6	4	8	2	4
400 - 500	2	4	3	6	3	6	3.	6	4	8
500 - 600	3	6	3	6	3	6	2	4	2	4
600 - 700	4	8	4	8	2	4	2	4	3	6
700 - 800	2	4	2	4	2	4	2	4	2	4
800 - 900	2	4	2	4	2	4	2	4	4	8
900 - 1000										1

Prepared by:

Authorised Signatory:

Checked by:

TG CS Date:

16/03/2017

Date: Date:

16/03/2017 16/3/2017 This report should only be reproduced in full

*Equivalent CBR values calculated using AUSTROADS (2010) Guide to Pavement Technology Part 2, Figure 5.3, For Fine Grained Cohesive Soils, and are relevant to fine grained cohesive soils only.

Page 1 of 3

Auckland Laboratory CMW Geosciences (NZ) Limited

Report No:

AKL2016_0326LAH Rev.0

Project Name:

29 Dinning Road

Project Location:

Riverhead

Project Number:

AKL2016_0326

Test Date:

15/03/2017

Tested By:

Client:

Client Address:

Cabra Developments Limited

Testing Locations Selected By:

Phone: +64 (09) 4144 632

Building C, 9 Piermark Drive, Rosedale, NZ 0632 PO Box 300206, Albany, Auckland, NZ 0752

CMW Field Staff

Fests indicated as not accredited are outside the scope of the laboratory's accreditation

Equivalent CBR Values are not accredited and are outside the scope of the Jaboratory's accreditation

Client Reference:

antigers (transmission)										
Test No.	11		12		13		14		15	
Test Location	Roa	rd 2	Roa	rd 2	Roa	id 1	Roa	Road 1		id 1
Chainage & Offset	CH330	Right	CH34	0 Left	CH180) Right	CH18	5 Left	CH190	Right
Material & Layer:	CLAY / S	ubgrade	CLAY / S	ubgrade	CLAY/S	ubgrade	CLAY / S	ubgrade	CLAY / S	ubgrade
Depth (mm)	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*
0 - 100	6	13	6	13	6	13	5	10	4	8
100 - 200	4	8	4	8	S	10	7	15	4	8
200 - 300	2	4	2	4	3	6	4	8	4	8
300 - 400	2	4	3	6	4	8	7	15	4	8
400 - 500	2	4	3	6	3	6	4	8	2	4
500 - 600	2	4	2	4	4	8	3	6	2	4
600 - 700	2	4	2	A	4	8	3	6	2	4
700 - 800	4	8	2	4	4	8	3	6	2	4
800 - 900	4	8	2	4	Á .	8	2	4	2	4
900 - 1000										
Test No.	1	.6	1	17	1	8		.9	2	.0
Test Location	Ros	ad 1	Ros	ad 1	Ros	ad 1	Ros	nd 1	Road 1	
Chainage & Offset	CH19	S Left	CH20	0 Right	CH20	5 Left	CH210 Right		CH22	0 Left
Material & Layer:	CLAY / S	ubgrade	CLAY / S	Subgrade	CLAY / S	ubgrade	CLAY / Subgrade		CLAY / S	Subgrade
Depth	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR
0 - 100	6	13	5	10	4	8	6	13	4	8
100 - 200	8	18	3	6	3	6	6	13	4	8
200 - 300	4	8	2	4	2	4	5	10	3	6
300 - 400	5	10	3	6	4	8	3	6	2	4
400 - 500	5	10	2	4	2	4	2	4	3	6
500 - 600	5	10	2	4	2	4	3	6	2	4
600 - 700	5	10	3	6	2	4	2	4	3	6
700 - 800	5	io	3	6	2	4	2	4	2	4
800 = 900	4	8	4	8	2	4	2	4	2	4

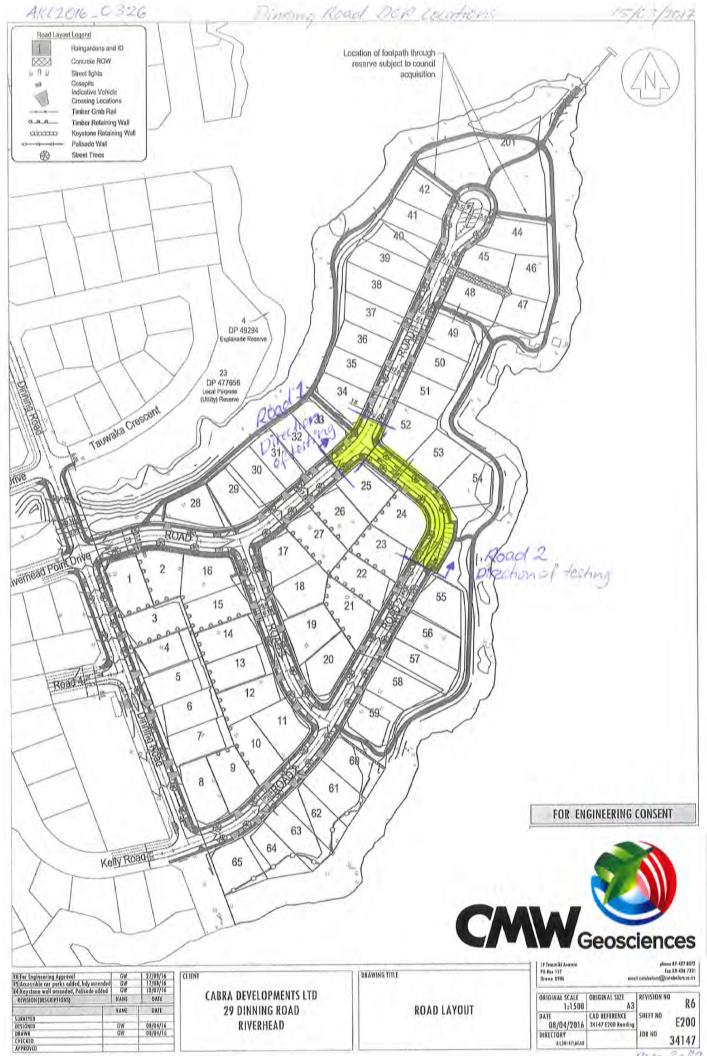
Prepared by: Checked by:

TG CS

Date:

16/03/2017

Date:


16/03/2017

*Equivalent CBR values calculated using AUSTROADS (2010) Guide to Pavement Technology Part 2, Figure 5.3, For Fine Grained Cohesive Soils, and are relevant to fine grained cohesive soils only.

Page 2 of 3

Authorised Signatory:

16/3/2017

Appendix E

Producer Statements

17 October 2017 Ref: AKL2016_0326AG Rev.0

Cabra Properties Limited PO Box 197 Orewa Auckland 0946

Attention: Duncan Unsworth

Dear Duncan,

RE: CERTIFICATION FOR THE CONSTRUCTION OF TIMBER POLE RETAINING WALLS AND KEYSTONE WALLS AT 29 DINNING ROAD, RIVERHEAD - RMA R67504, ENG 60065935

CMW Geosciences (CMW) has visited the site at 29 Dinning Road, Riverhead, legally described as Lot 1 DP 124412, on numerous occasions during January 2017 through to June 2017 to observe the site works for the construction of timber pole and keystone retaining walls.

Our work has included review of the following documents and drawings:

- Engineering approval from Auckland Council referenced RMA R67504 and ENG 60065935, issued 25 November 2016;
- Geotechnical Retaining Wall Design Report for 26 Dinning Road, Riverhead prepared by CMW Geosciences, referenced AKL2016_0326 AD Rev.1, dated 25 October 2016.

The site works observed and/or tested by CMW staff incorporated:

- Timber pole retaining walls
 - o Assessment of soil strengths in the exposed pile foundation excavations;
 - Pile size, depth, spacing and diameter;
 - o Timber pole size, treatment and placement;
 - o Lagging dimensions and placement;
 - o Drainage material and installation.
- Keystone retaining walls
 - Assessment of soil strengths in the exposed foundation excavations;
 - Foundation dimensions;
 - o Geogrid reinforcement placement (type, length, vertical spacing);
 - Hardfill compaction;
 - Drainage material and installation.

Construction aspects of the timber pole and keystone retaining walls were checked for the aforementioned points over numerous visits.

Compaction of the reinforced hardfill was checked by proof rolling on site to observe deflection under compaction and was tested using a NDM and an impact hammer.

Ground conditions were tested using a handheld shear vane in the bases and sides of the pile excavations. The retained soil was also tested as part of the observations. All ground conditions met or exceeded design specifications.

When water was observed in the pile excavations the contractor was advised to either tremie the concrete to the base of the excavation or remove the water immediately prior to pouring concrete. CMW were not present at the time of concrete pouring.

On the basis of our observations and testing, we consider that the works have been undertaken in accordance with the Resource Consent and related approved documentation described above and are in accordance with the requirements and/or recommendations of the geotechnical report.

For and on behalf of CMW Geosciences

Richard Knowles

Af Knowles

Principal Geotechnical Engineer, CPEng

Attachments: Producer Statement - Construction Review

Building Code Clause(s).....B1....

PRODUCER STATEMENT - PS4 - CONSTRUCTION REVIEW

(Guidance notes on the use of this form are printed on page 2)

ISSUED BY:
TO:
TO BE SUPPLIED TO: AUCKLAND COUNCIL (Building Consent Authority)
IN RESPECT OF: CONSTRUCTION OF TIMBER POLE AND KEYSTONE RETAINING WALLS (Description of Building Work)
AT:29 DINNING ROAD, RIVERHEAD
LOT 1
CMW GEOSCIENCES has been engaged by CABRA PROPERTIES LIMITED
To provide CM1 CM2 CM3 CM4 CM5(Engineering Categories) or observation as per agreement with owner/developer
or OtherREFER TO ATTACHED DOCUMENT AKL2016_0326AG REV.0 DATED 17/10/2017service (Extent of Engagement)
in respect of clause(s)
documents relating to Building Consent NoRMA R67504 and ENG 60065935 and those relating to
Building Consent Amendment(s) Nos
course of the works. We have sighted these Building Consents and the conditions of attached to them.
Authorised instructions / variations(s) No
or by the attached Schedule \(\subseteq \text{have been issued during the course of the works.} \)
On by the basis of this these review(s) and information supplied by the contractor during the course of the works at on behalf of the firm undertaking this Construction Review, I believe on reasonable grounds that All Part only the building works have been completed in accordance with the relevant requirements of the Building Consent and Building Consent Amendments identified above, with respect to Clause(s)
I,
(Name of Construction Review Professional) Reg Arch No
I am a Member of : ⊠IPENZ □NZIA and hold the following qualifications: BE(CIVIL), CPEng
The Construction Review Firm issuing this statement holds a current policy of Professional Indemnity Insurance no less than \$200,000*. The Construction Review Firm is a member of ACENZ:
SIGNED BY R. J. KNOWLES ON BEHALF OF CMW GEOSCIENCES (NZ) LIMITED Date: Signature:
Note: This statement shall only be relied upon by the Building Consent Authority named above. Liability under this statement accrues to the Design Firm only. The total maximum amount of damages payable arising from this statement and all other statements provided to the Buildi

Note: This statement shall only be relied upon by the Building Consent Authority named above. Liability under this statement accrues to the Design Firm only. The total maximum amount of damages payable arising from this statement and all other statements provided to the Building Consent Authority in relation to this building work, whether in contract, tort or otherwise (including negligence), is limited to the sum of \$200,000*.

This form is to accompany Forms 6 or 8 of the Building (Form) Regulations 2004 for the issue of a Code Compliance Certificate.

GUIDANCE ON USE OF PRODUCER STATEMENTS

Producer statements were first introduced with the Building Act 1991. The producer statements were developed by a combined task committee consisting of members of the New Zealand Institute of Architects, Institution of Professional engineers New Zealand, Association of Consulting Engineers New Zealand in consultation with the Building Officials Institute of New Zealand. The original suit of producer statements has been revised at the date of this form as a result of enactment of the Building Act (2004) by these organisations to ensure standard use within the industry.

The producer statement system is intended to provide Building Consent Authorities (BCAs) with reasonable grounds for the issue of a Building Consent or a Code Compliance Certificate, without having to duplicate design or construction checking undertaken by others.

PS1 Design Intended for use by a suitably qualified independent design professional in circumstances where the BCA accepts a producer statement for establishing reasonable grounds to issue a Building Consent;

PS2 Design Review Intended for use by a suitably qualified independent design professional where the BCA accepts an independent design professional's review as the basis for establishing reasonable grounds to issue a Building Consent;

PS3 Construction Forms commonly used as a certificate of completion of building work are Schedule 6 of NZS 3910:2013 or Schedules E1/E2 of NZIA's SCC 2011²

PS4 Construction Review Intended for use by a suitably qualified independent design professional who undertakes construction monitoring of the building works where the BCA requests a producer statement prior to issuing a Code Compliance Certificate.

This must be accompanied by a statement of completion of building work (Schedule 6).

The following guidelines are provided by ACENZ, IPENZ and NZIA to interpret the Producer Statement.

Competence of Design Professional

This statement is made by a Design Firm that has undertaken a contract of services for the services named, and is signed by a person authorised by that firm to verify the processes within the firm and competence of its designers.

A competent design professional will have a professional qualification and proven current competence through registration on a national competence based register, either as a Chartered Professional Engineer (CPEng) or a Registered Architect.

Membership of a professional body, such as the Institution of Professional Engineers New Zealand (IPENZ) or the New Zealand Institute of Architects (NZIA), provides additional assurance of the designer's standing within the profession. If the design firm is a member of the Association of Consulting Engineers New Zealand (ACENZ), this provides additional assurance about the standing of the firm.

Persons or firms meeting these criteria satisfy the term "suitably qualified independent design professional".

*Professional Indemnity Insurance

As part of membership requirements, ACENZ requires all member firms to hold Professional Indemnity Insurance to a minimum level.

The PI Insurance minimum stated on the front of this form reflects standard, small projects. If the parties deem this inappropriate for large projects the minimum may be up to \$500,000.

Professional Services during Construction Phase

There are several levels of service which a Design Firm may provide during the construction phase of a project (CM1-CM5 for Engineers³). The Building Consent Authority is encouraged to require that the service to be provided by the Design Firm is appropriate for the project concerned.

Requirement to provide Producer Statement PS4

Building Consent Authorities should ensure that the applicant is aware of any requirement for producer statements for the construction phase of building work at the time the building consent is issued as no design professional should be expected to provide a producer statement unless such a requirement forms part of the Design firm's engagement.

Attached Particulars

Attached particulars referred to in this producer statement refer to supplementary information appended to the producer statement.

Refer Also:

- Conditions of Contract for Building & Civil Engineering Construction NZS 3910: 2013
- NZIA Standard Conditions of Contract SCC 2011
- 3 Guideline on the Briefing & Engagement for Consulting Engineering Services (ACENZ/IPENZ 2004)
- 4 PN Guidelines on Producer Statements

www.acenz.org.nz www.ipenz.org.nz www.nzia.co.nz

Producer Statements PS1, PS2, & PS4 2 October 2013

17 October 2017 Ref: AKL2016 0326AH Rev.0

Cabra Properties Limited PO Box 197 Orewa Auckland 0946

Attention: Duncan Unsworth

Dear Duncan,

RE: CERTIFICATION FOR THE CONSTRUCTION OF A PALISADE (IN-GROUND) WALL AT 29 DINNING ROAD, RIVERHEAD - RMA R67504, ENG 60065935

CMW Geosciences (CMW) have visited the site at 29 Dinning Road, Riverhead, legally described as Lot 1 DP124414, on multiple occasions during April 2017 to observe the site works for the construction of a palisade (in-ground) wall.

Our work has included review of the following documents and drawings:

- Engineering approval from Auckland Council referenced RMA R67504 and ENG 60065935, issued 25 November 2016;
- Geotechnical Palisade Retaining Wall Design Report for 26 Dinning Road, Riverhead prepared by CMW Geosciences, referenced AKL2016_0326 AC Rev.0, dated 1 July 2016.

The site works observed and/or tested by CMW staff incorporated:

- Assessment of soil strengths in the exposed pile hole excavations;
- Pile size, depth, spacing and diameter;
- · Timber treatment and placement;

Our testing showed that ground conditions were in excess of the design assumptions of 100kPa, and embedment depth, spacing and diameter of pile holes were in accordance with the design. The offset of the palisade wall from the crest of the slope was greater than 2.0m.

On the basis of our observations and testing, we consider that the site works have been undertaken in accordance with the Resource Consent and related approved documentation described above and are in accordance with the requirements and/or recommendations of the geotechnical report.

For and on behalf of CMW Geosciences

Richard Knowles

Principal Geotechnical Engineer, CPEng

Attachments: Producer Statement - Construction Review

Building Code Clause(s)......B1....

PRODUCER STATEMENT – PS4 – CONSTRUCTION REVIEW

(Guidance notes on the use of this form are printed on page 2)

ISSUED BY:
TO:CABRA PROPERTIES LIMITED(Owner/Developer)
TO BE SUPPLIED TO:AUCKLAND COUNCIL
IN RESPECT OF: CONSTRUCTION OF A PALISADE (IN-GROUND) WALL(Description of Building Work)
AT:29 DINNING ROAD, RIVERHEAD
LOT 1
CMW GEOSCIENCES has been engaged byCABRA PROPERTIES LIMITED
To provide CM1 CM2 CM3 CM4 CM5(Engineering Categories) or observation as per agreement with owner/developer
or ⊠otherREFER TO ATTACHED DOCUMENT AKL2016_0326AH REV.0 DATED 17/10/2017services (Extent of Engagement)
in respect of clause(s)
documents relating to Building Consent NoRMA R67504 and ENG 60065935 and those relating to
Building Consent Amendment(s) Nos
course of the works. We have sighted these Building Consents and the conditions of attached to them.
Authorised instructions / variations(s) No
or by the attached Schedule have been issued during the course of the works.
On by the basis of Sthis I these review(s) and information supplied by the contractor during the course of the works and
on behalf of the firm undertaking this Construction Review, I believe on reasonable grounds that ⊠All □Part only o
the building works have been completed in accordance with the relevant requirements of the Building Consent and Building
Consent Amendments identified above, with respect to Clause(s)B1of the Building Code.
I also believe on reasonable grounds that the persons who have undertaken this construction review have the necessary
competency to do so.
I,
Reg Arch No.
I am a Member of : IPENZ NZIA and hold the following qualifications: BE(CIVIL), CPEng
The Construction Review Firm issuing this statement holds a current policy of Professional Indemnity Insurance no less than \$200,000*.
The Construction Review Firm is a member of ACENZ :
SIGNED BY
Date: 18/10/17 Signature: 1/2
Note: This statement shall only be relied upon by the Building Consent Authority named above. Liability under this statement accrues to the

Note: This statement shall only be relied upon by the Building Consent Authority named above. Liability under this statement accrues to the Design Firm only. The total maximum amount of damages payable arising from this statement and all other statements provided to the Building Consent Authority in relation to this building work, whether in contract, tort or otherwise (including negligence), is limited to the sum of \$200,000*.

This form is to accompany Forms 6 or 8 of the Building (Form) Regulations 2004 for the issue of a Code Compliance Certificate.

THIS FORM AND ITS CONDITIONS ARE COPYRIGHT TO ACENZ, IPENZ AND NZIA

GUIDANCE ON USE OF PRODUCER STATEMENTS

Producer statements were first introduced with the Building Act 1991. The producer statements were developed by a combined task committee consisting of members of the New Zealand Institute of Architects, Institution of Professional engineers New Zealand, Association of Consulting Engineers New Zealand in consultation with the Building Officials Institute of New Zealand. The original suit of producer statements has been revised at the date of this form as a result of enactment of the Building Act (2004) by these organisations to ensure standard use within the industry.

The producer statement system is intended to provide Building Consent Authorities (BCAs) with reasonable grounds for the issue of a Building Consent or a Code Compliance Certificate, without having to duplicate design or construction checking undertaken by others.

PS1 Design Intended for use by a suitably qualified independent design professional in circumstances where the BCA accepts a producer statement for establishing reasonable grounds to issue a Building Consent;

PS2 Design Review Intended for use by a suitably qualified independent design professional where the BCA accepts an independent design professional's review as the basis for establishing reasonable grounds to issue a Building Consent;

PS3 Construction Forms commonly used as a certificate of completion of building work are Schedule 6 of NZS 3910:2013 or Schedules E1/E2 of NZIA's SCC 2011²

PS4 Construction Review Intended for use by a suitably qualified independent design professional who undertakes construction monitoring of the building works where the BCA requests a producer statement prior to issuing a Code Compliance Certificate.

This must be accompanied by a statement of completion of building work (Schedule 6).

The following guidelines are provided by ACENZ, IPENZ and NZIA to interpret the Producer Statement.

Competence of Design Professional

This statement is made by a Design Firm that has undertaken a contract of services for the services named, and is signed by a person authorised by that firm to verify the processes within the firm and competence of its designers.

A competent design professional will have a professional qualification and proven current competence through registration on a national competence based register, either as a Chartered Professional Engineer (CPEng) or a Registered Architect.

Membership of a professional body, such as the Institution of Professional Engineers New Zealand (IPENZ) or the New Zealand Institute of Architects (NZIA), provides additional assurance of the designer's standing within the profession. If the design firm is a member of the Association of Consulting Engineers New Zealand (ACENZ), this provides additional assurance about the standing of the firm.

Persons or firms meeting these criteria satisfy the term "suitably qualified independent design professional".

*Professional Indemnity Insurance

As part of membership requirements, ACENZ requires all member firms to hold Professional Indemnity Insurance to a minimum level.

The PI Insurance minimum stated on the front of this form reflects standard, small projects. If the parties deem this inappropriate for large projects the minimum may be up to \$500,000.

Professional Services during Construction Phase

There are several levels of service which a Design Firm may provide during the construction phase of a project (CM1-CM5 for Engineers³). The Building Consent Authority is encouraged to require that the service to be provided by the Design Firm is appropriate for the project concerned.

Requirement to provide Producer Statement PS4

Building Consent Authorities should ensure that the applicant is aware of any requirement for producer statements for the construction phase of building work at the time the building consent is issued as no design professional should be expected to provide a producer statement unless such a requirement forms part of the Design firm's engagement.

Attached Particulars

Attached particulars referred to in this producer statement refer to supplementary information appended to the producer statement.

Refer Also:

- Conditions of Contract for Building & Civil Engineering Construction NZS 3910: 2013
- NZIA Standard Conditions of Contract SCC 2011
- 3 Guideline on the Briefing & Engagement for Consulting Engineering Services (ACENZ/IPENZ 2004)
- 4 PN Guidelines on Producer Statements

www.acenz.org.nz www.ipenz.org.nz www.nzia.co.nz

Producer Statements PS1, PS2, & PS4 2 October 2013