

13 February 2018

DEACON POINT SUBDIVISION STAGE 3, RIVERHEAD

GEOTECHNICAL COMPLETION REPORT

CABRA PROPERTIES LIMITED

Ref: AKL2016_0326AG Rev: 0

Table of Contents

1.	INTF	RODU	ICTION	. 1
2.	PRO	JECT	BACKGROUND	. 1
3.	DES	CRIP	TION OF EARTHWORKS	. 1
4.	GEC	TEC	HNICAL QUALITY CONTROL	2
	4.1.	Site	Observations	2
	4.2.	Com	paction Control	2
5.	EVA	LUAT	ION OF COMPLETED EARTHWORKS	. 2
	5.1.	Natu	ral Hazards	2
	5.2.	Land	Stability and Erosion Control	. 3
	5.3.	Fill I	nduced Settlement	. 3
	5.4.	Serv	ice Line Trenches	. 3
	5.5.	Roa	d Subgrades	. 3
	5.6.	Futu	re Development on Reserve Areas	4
	5.7.	Desi	gn of Shallow Foundations	4
	5.7.1	1.	Bearing Capacity	4
	5.7.2	2.	Foundation Settlements	4
	5.7.3	3.	Soil Expansiveness Classification	4
	5.8.	Tops	soil Depths	5
6.	CLO	SURI		. 5

Appendices

Appendix A – Statement of Professional Opinion as to the Suitability of Land For Building Development

Appendix B - Drawings

Appendix C – Laboratory Test Data

Appendix D - Field Test Data

Appendix E – Producer Statement

1. INTRODUCTION

In accordance with our instructions, this Geotechnical Completion Report has been prepared for Cabra Properties Ltd as part of the documentation to be submitted to Auckland Council following earthworks to form Stage 3 of the Deacon Point Subdivision development. Construction of this residential subdivision has been undertaken in accordance with the Auckland Council Resource Consent number SLC-67504 and Engineering Approval letter for Earthworks, Retaining, Roading and Stormwater dated 25 November 2016 and Engineering Approval letter for Wastewater and Water Supply dated 23 January 2017. Specific structures constructed during the civil works to create the subdivision include a timber boardwalk.

This report contains our Suitability Statement, specific comments related to items raised in the Resource Consent, relevant test data and the Cato Bolam Consultants Limited as-built plan set as provided in Appendix B.

This report covers the construction period October 2016 to July 2017 and is intended to be used for certification purposes for new lots (listed below) created from Lot 1 DP 124412 as follows:

- 14 new residential lots numbered 35 to 41 and 45 to 51 inclusive;
- An extension to the existing Riverhead Point Drive;
- 2 new local purpose reserves numbered lots 200 and 201;
- A new local purpose accessway numbered lot 203

This stage of the Deacon Point Subdivision Development is located off Riverhead Point Drive, Riverhead. As can be seen from the as-built plans, all of the lots have been affected by filling as part of the earthworks operations to a maximum depth of approximately 3 metres.

2. PROJECT BACKGROUND

The geotechnical investigations and design for this development were undertaken by CMW Geosciences as presented in the following reports:

- CMW Geotechnical Investigation Report referenced AKL2016_0326AB Rev. 2, dated 13 May 2016.
- CMW Design Parameters for Proposed Boardwalk referenced AKL2016_0326AE Rev. 0, dated 27 April 2017.
- CMW Geotechnical Completion Report for Deacon Point Subdivision Stages 1 & 2 referenced AKL2016_0326AF Rev. 0, dated 17 October 2017.

3. DESCRIPTION OF EARTHWORKS

Earthworks for this stage of the development were undertaken as part of the previous stage of development between October 2016 and July 2017.

Civil works for this stage of the development began in July 2017 and continued until December 2017 with works to form the roads, footpaths, boardwalks and service lines undertaken during this time together with topsoiling and seeding of lots and formation of coastal outlet structures and planting.

The main items of plant used by the earthworks subcontractor, BHE Limited, included:

- 2x D6 Bulldozers and Scoops
- 2x Articulated Dump Trucks
- 1x D6 Bulldozer

CMW Geosciences Ref: AKL2016_0326AG Rev: 0 Geotechnical Completion Report

- 1x Tractor and Discs
- 1x 4T Front End Loader
- 2 x 5T Excavators
- 2 x 20T Excavators
- 1x 13T Excavator
- 2x Road Dump Trucks
- 1x Water Cart
- 1x 815 Compactor

4. GEOTECHNICAL QUALITY CONTROL

4.1. Site Observations

During the earthworks site visits were typically undertaken several times each week to assess compliance with NZS 4431 and specific design recommendations and specifications.

Site visits were carried out to observe and confirm compliance relating to:

- Adequate topsoil stripping;
- Fill areas prior to the placement of fill materials to ascertain that all mullock and soft inorganic subsoils had been removed;
- Excavation and backfilling of sewer and stormwater trenches;
- Placement and compaction of engineered fills.

4.2. Compaction Control

Compaction of engineered earth fills was controlled by undrained shear strength measured by hand held shear vane calibrated using the NZGS 2001 method and by air voids as defined by NZS4402.

The criteria for undrained shear strength were a minimum single value of 110 kPa and minimum average of any 10 consecutive tests of 140 kPa.

The criteria for air voids were a maximum single value of 12% and maximum average of any 10 consecutive tests of 10%.

Vane shear strength, water content and in situ density tests were carried out on all areas of the engineered filling to at least the frequency recommended by NZS 4431.

These tests showed on some occasions that the required compaction standards were not being achieved and to the best of our knowledge the failing areas of fill were re-worked as necessary. Subsequent testing confirmed compliance with the specification.

5. EVALUATION OF COMPLETED EARTHWORKS

5.1. Natural Hazards

The appended as-built drawings depict the extents of a zone that contain limitations intended to ensure that future building and/ or earthworks on the lots is undertaken in a manner that does not lead to buildings being subject to any of the natural hazards described in section 106 of the Resource Management Act, i.e. erosion, falling debris, subsidence, slippage, and inundation. Consideration of the inundation hazard was outside the scope of CMW's brief and has been assessed by others. On

this site, the applied **Specific Design Zones (slope)** is intended to protect building development from long term creep effects on or adjacent to steep slopes and to protect the slopes from inappropriate loading or undermining.

Full descriptions of the restrictions associated with these zones are presented in the Suitability Statement (Appendix A). Additional information is also provided in some of the following sections.

5.2. Land Stability and Erosion Control

On all steep land, surface stability can be compromised by indiscriminate disposal of stormwater onto the ground surface and/ or by removal of vegetation.

Building and landscape designers must ensure that all runoff from solid surfaces is directed into the stormwater system. It is also important that care is paid to the disposal of stormwater during construction so that concentrated discharges (e.g. from unconnected spouting) are not directed towards steep ground.

Wherever practical existing vegetation and grass cover should be well maintained. Any vegetation cleared beyond the immediate area of building platforms for temporary construction purposes should be replanted or replaced as soon as possible. The roots of an established vegetation cover can serve to bind the surface soils while the foliage can reduce rain infiltration and soil saturation, resulting in better resistance to erosion and shallow slumping.

5.3. Fill Induced Settlement

On the basis of the relatively minor magnitude of fill depths on this site, together with the elapsed time since it was placed, we consider that remaining post-construction settlements will be within code limits.

5.4. Service Line Trenches

As part of the civil works, sanitary sewer and stormwater services were trenched throughout the development as shown on the appended Stormwater As-built Plans. Sanitary sewer services within this subdivision are based on Pressure Wastewater Collection (PWC) systems, which are installed in the common services trenches outside of the residential lots.

As is normal on all subdivisions, building developments involving foundations within a 45-degree zone of influence from pipe inverts will require engineering input. The Auckland Council drawing referenced SW22 provided in Appendix B extracted from Chapter 4 of the Auckland Council Code of Practice for Land development and Subdivision depicts their requirements for stormwater pipes. Details for water and wastewater pipes are available in the Watercare Code of Practice for Land Development and Subdivision, with drawings referenced WW 53, WW54 and WW60 applicable to bridging wastewater pipes. The majority of lots are known to have service trenches within the lot boundary as shown on the appended stormwater and wastewater as-built plans. The resulting restrictions are presented in the Suitability Statement below, together with a table of the affected lots.

Lots 36 to 45 and 47 to 51 inclusive are affected by service lines as indicated on the appended Stormwater Drainage Zone of Influence Plan.

5.5. Road Subgrades

Penetration resistance testing was carried out on the road subgrades during construction and the results of this testing were forwarded to Cato Bolam Consultants Limited for pavement remedial design. Where soft ground with low equivalent CBR values was identified it was generally undercut and replaced with engineered fill. All road subgrade areas were subsequently lime/ cement stabilised to achieve appropriate CBR values.

Benkelman Beam testing of the base course was carried out by Road Test Limited on each road and those results were also forwarded to Cato Bolam Consultants.

5.6. Future Development on Reserve Areas

Any future development of buildings or structures within the Local Purpose Reserve area (Lot 200) to be undertaken as part of reserve works by Auckland Council should be preceded by specific investigation and design of such works to confirm that ground conditions and geotechnical constraints are suitable for the proposed works. This should include confirmation of bearing capacity, land stability and coastal inundation assessments given the position of the reserve areas adjacent to the estuary.

5.7. Design of Shallow Foundations

5.7.1. Bearing Capacity

Once bulk earthworks and top-soiling of the building platforms had been completed, our staff drilled hand auger boreholes on platforms in natural ground to determine representative finished ground conditions and hence evaluate likely foundation options for future building development. Our assessments of bearing capacity for the design of shallow foundations on each building platform are contained in the appended Suitability Statement.

At current subgrade levels lots 35 to 41 and 45 to 51 inclusive have been assessed as having a geotechnical ultimate bearing capacity of 300 kPa within the influence of conventional shallow residential building foundation loads.

If higher geotechnical ultimate bearing capacities are required, further specific site investigation and design of foundations should be carried out prior to Building Consent application.

5.7.2. Foundation Settlements

At the bearing pressures specified above and subject to the design requirements for soil expansiveness provided below, differential settlement of shallow foundations for buildings designed in accordance with NZS 3604 (including the 600mm subfloor fill depth limit) should be within code limits.

5.7.3. Soil Expansiveness Classification

Four sets of soil tests were carried out on samples taken from likely foundation level on lots within the development.

Testing was carried out in accordance with NZS 4402, "Methods of Testing Soils for Civil Engineering Purposes" test 2.2 and 2.6 and were used in conjunction with visual-tactile assessment of the site soils to determine expansive site Classes as defined in AS 2870, "Residential Slabs and Footings – Construction". All test results are appended.

On this basis we have assessed the AS 2870 Site Class for all lots these stages of the development to be M (moderate). Details of foundation options for this Class are contained in the appended Suitability Statement.

In recent years in Auckland, there have been examples of concrete floors and/ or foundations that have been poured on dry, desiccated subgrades in summer months on expansive soils and have undergone heaving and cracking once the soil moisture contents have returned to higher levels. Foundation contractors need to be made aware of this issue and the need to maintain appropriate moisture contents in the footings and building platform subgrade between the time of excavation and the pouring of concrete.

Remedial actions that may be appropriate include platform protection with a hard fill layer, pouring of a blinding layer of concrete in footing bases and soaking of the building platform with sprinklers for an extended period.

Home owners need to be aware that the planting of high water demand plants where their roots may extend close to footings can also cause settlement damage.

5.8. Topsoil Depths

Topsoil depths have been checked by the drilling of a borehole in the approximate centre of the building platform on each lot. The results are considered indicative for each lot, but may be subject to variations. Topsoil depths are between 100 and 300mm on this stage of the development.

Site specific findings are contained in the appended Suitability Statement Summary (Appendix A). However, it is possible that further levelling works have been undertaken since our investigations and accordingly, we strongly recommend that lot purchasers complete their own checks of topsoil depths.

6. CLOSURE

The appended Statement of Professional Opinion is provided to the Auckland Council and Cabra Properties Limited for their purposes alone on the express condition that it will not be relied upon by any other person. It is important that prospective purchasers satisfy themselves as to any specific conditions pertaining to their particular land interest.

Although regular site visits have been undertaken for observation, for providing guidance and instruction and for testing purposes, the geotechnical services scope did not include full time site presence. To this end, our appended Suitability Statement also relies on the Contractors' work practices and assumes that when we have not been present to observe the work, it has been completed to high standards and in accordance with the drawings, instructions and consent conditions provided to them.

Similarly, it assumes that all as-built information and other details provided to the Client and/or CMW by other members of the project team are accurate and correct in all respects.

For and on behalf of CMW Geosciences

Prepared by:

Reviewed and Approved by:

M Knowles

Greg Snook

Senior Engineering Geologist

Richard Knowles

Principal Geotechnical Engineer, CPEng

Appendix A

Statement of Professional Opinion as to the Suitability of Land for Building Development

STATEMENT OF PROFESSIONAL OPINION AS TO THE SUITABILITY OF LAND FOR BUILDING DEVELOPMENT

- I, R.J Knowles, of CMW Geosciences (NZ) Limited Partnership, Auckland, hereby confirm that:
- As a Chartered Professional Engineer experienced in the field of geotechnical engineering, I am
 a Geo-professional as defined in section 1.2.2 of NZS 4404 and was retained by the Developer
 as the Geotechnical Engineer on Stage 3 of the Deacon Point Subdivision Development.
- The extent of preliminary investigations carried out to date are described in the CMW Geosciences Geotechnical Investigation Report referenced AKL2016-0326AB Rev. 2, dated 13 May 2016. The conclusions and recommendations of those documents have been re-evaluated in the preparation of this report. The results of all tests carried out are also appended.
- 3. In my professional opinion, not to be construed as a guarantee, I consider that:
 - (a) The earth fills shown on the appended Cut Fill As-built Plan have been placed in compliance with NZS 4431, the Auckland Council District Plans (Rodney Section) and related documents.
 - (b) The completed earthworks give due regard to land slope and foundation stability considerations on the building platform areas, but as shown on the appended building restriction zones plans, areas on all lots have gradients steeper than 1(v) in 4 (h) or are adjacent to land having such gradients. Accordingly, restrictions incorporating **Specific Design Zones (Slope)** have been applied as depicted on the as-built plans on Lots 37 to 41 inclusive. No building construction <u>and</u> no earthworks (i.e. cut or fills of any depth) should take place within the designated **Specific Design Zone (Slope) areas** unless endorsed by a Chartered Professional Engineer experienced in geomechanics and familiar with the contents of this report. The endorsement will need to consider the implications of the proposals on both global stability conditions and soil creep on the building buildings, the interaction with service pipes and associated trench backfills, control of surface water, construction sequencing, timing and temporary support requirements construction of all earthworks, foundations and retaining walls and if necessary, comment on what aspects require engineering inspections and certification.

This limitation also applies to long term landscaping works, including any proposed minor cuts either on or near batter toes to be retained by new landscaping walls that might not normally require engineering, and to landscaping fills on or immediately above the batter slopes.

- (c) A geotechnical ultimate bearing capacity of 300 kPa may be assumed for shallow foundation design on the building platforms of all the lots on this stage of the development.
 - If for any reason higher geotechnical bearing capacities are required, further specific site investigation and design of foundations should be carried out prior to Building Consent application.
- (d) The expansive site Class for all lots has been assessed as AS2870 Class M (Moderate). We recommend that building designers note on the Building Consent drawings the need to maintain appropriate moisture levels across building subgrades and in footing excavations (as described in Section 5.7.3 of the Geotechnical Completion Report) for reference by foundation contractors.

CMW Geosciences Ref: AKL2016_0326AG Rev: 0 Appendix A Geotechnical Completion Report

- (e) The backfilling and compaction of the storm water and sanitary sewer trenches on this subdivision has been carried out to appropriate standards having regard for the prevailing ground conditions and associated compaction induced pipe loadings.
 - However, no building development should take place within the 45 degree zone of influence of drain inverts unless endorsed by specific design and by construction inspections undertaken by a Chartered Professional Engineer experienced in geomechanics to ensure that lateral stability and differential settlement issues are addressed and that building loads are transferred beyond the influence of the pipe and trench backfill. A copy of drawing SW22 extracted from Chapter 4 of the Auckland Council Code of Practice for Land development and Subdivision this document is provided in Appendix B for clarification. Details for water and wastewater pipes are available in the Watercare Code of Practice for Land Development and Subdivision, with drawings referenced WW 53, WW54 and WW60 applicable to bridging wastewater pipes. Lots 35 to 45 and 47 to 51 inclusive are affected by service line drainage as indicated on the appended Stormwater Drainage Zone of Influence Plan.
- (f) Subject to the geotechnical limitations, restrictions and recommendations contained in clauses 3(a), 3(b), 3(c), 3(d), and 3(e) above:
 - (i) The filled and natural ground is generally suitable for residential buildings constructed in accordance with NZS 3604 and the requirements of AS2870 for the appropriate expansive soil class.
 - (ii) Where shallow foundations are appropriate, design may be carried out in accordance with AS 2870 (Class M) or alternately, a specific foundation and structural design may be undertaken by a Chartered Professional Engineer.
- 4. Road subgrades have been formed with appropriate regard for slope stability and settlement risks.
- 5. Local Purpose (esplanade) Reserve Lot 200 has not been significantly worked as part of the development in accordance with the constraints and limitations required by Council's Parks department.
- 6. Local Purpose Reserve Lot 201 has been formed to standards appropriate for its intended use. However, if future building development is to occur on this site, it should be preceded by site specific investigations and design to confirm appropriate soil conditions and parameters.

The following table summarises the conditions on each of the residential lots.

For and on behalf of CMW Geosciences

Richard Knowles

Ry Knowles

Principal Geotechnical Engineer, CPEng

GCR Summary Table

Condition	Specific Design Zone (slope)	Geotechnical Ultimate Bearing Capacity (kPa)	AS2870 Expansive Class	Service Lines Restrictions	Indicative Topsoil Depth (mm)
GCR SOPO Clause	3(b)	3(c)	3(d)	3(e)	
Lot number					
35		300	М	•	200
36		300	М	•	250
37	•	300	М	•	300
38	•	300	М	•	200
39	•	300	М	•	300
40	•	300	М	•	300
41	•	300	М	•	100
45		300	М	•	300
46		300	М		300
47		300	М	•	300
48		300	М	•	300
49		300	М	•	250
50		300	М	•	200
51		300	М	•	200

Appendix B

Drawings

Title	Reference No.	Date	Revision
Cover Sheet	34147 E000	Nov 2017	
Final Contours	34147 E635	Nov 2017	
Cut Fill	34147 E636	Nov 2017	
Roading	34147 E637	Nov 2017	
Wastewater Reticulation	34147 E638	Nov 2017	
Stormwater Reticulation (2 Sheets)	34147 E639 and E640	Nov 2017	
Water Reticulation	34147 E641	Nov 2017	
Stormwater Drainage Zone of Influence Plan	34147 E642	Nov 2017	
Specific Design Zone Plan	34147 E643	Nov 2017	

Cabra Properties Ltd Deacon Point Stage 3 Dinning Road, Riverhead

E000

Cover Sheet

AS BUILT PLAN SET - 34147 Stages 3

E635

Final Contours

E636

Cut Fill

E637

Roading

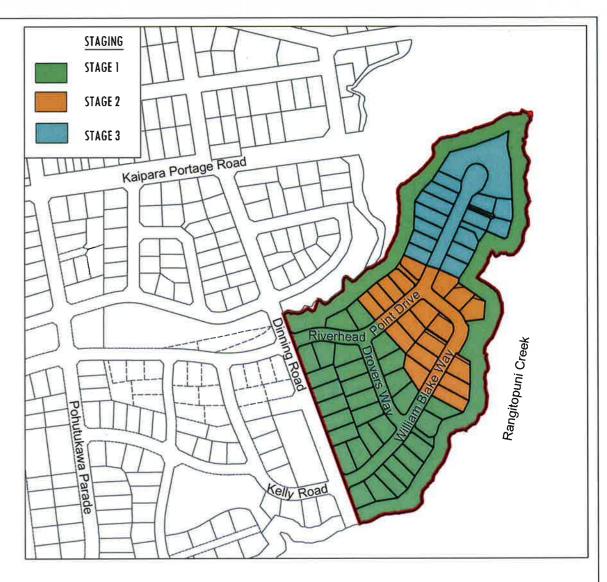
E638

Wastewater Reticulation

E639

Stormwater Reticulation - Sheet 1 of 2

E640


Stormwater Reticulation - Sheet 2 of 2

E641

Water Reticulation

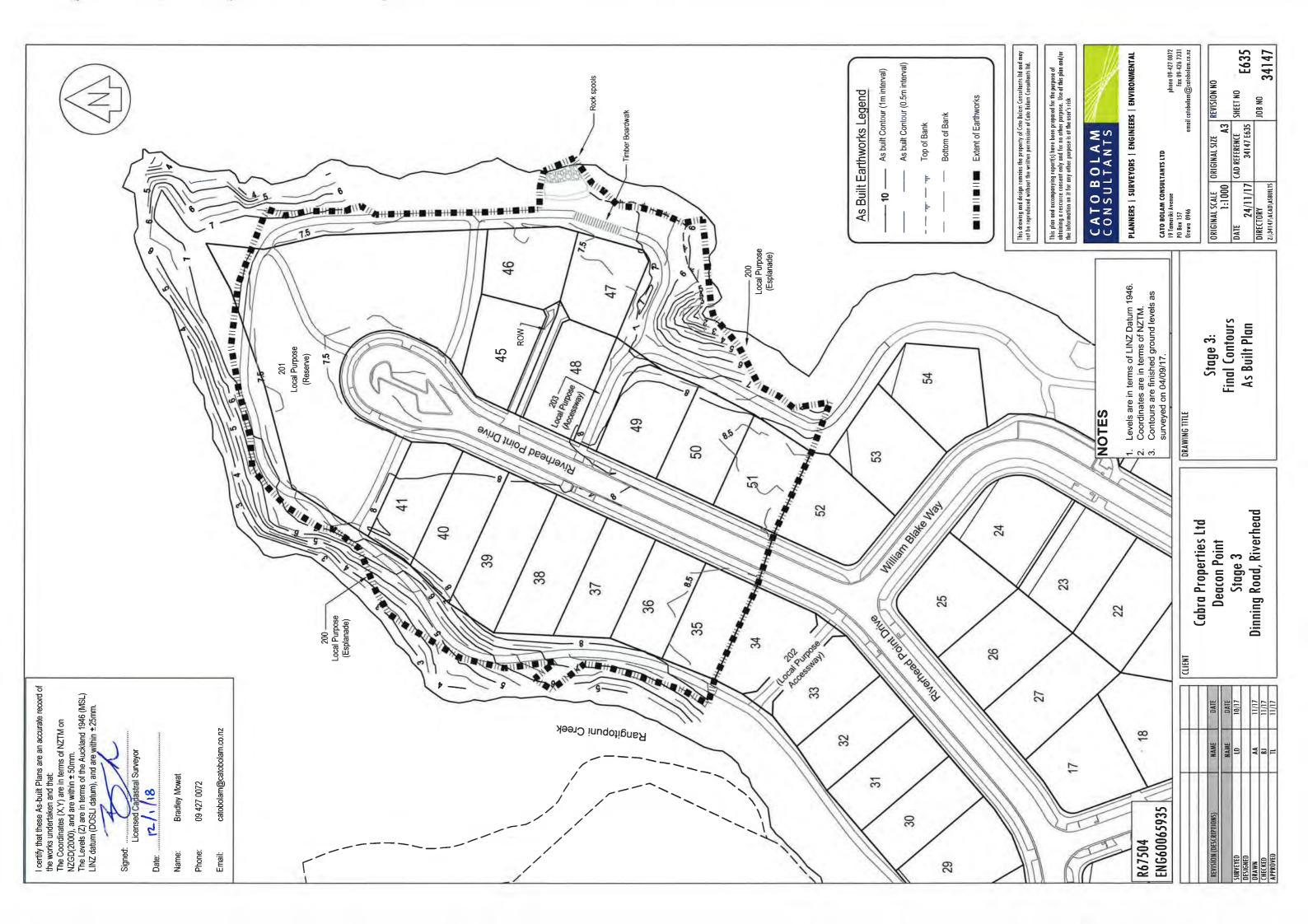
E642

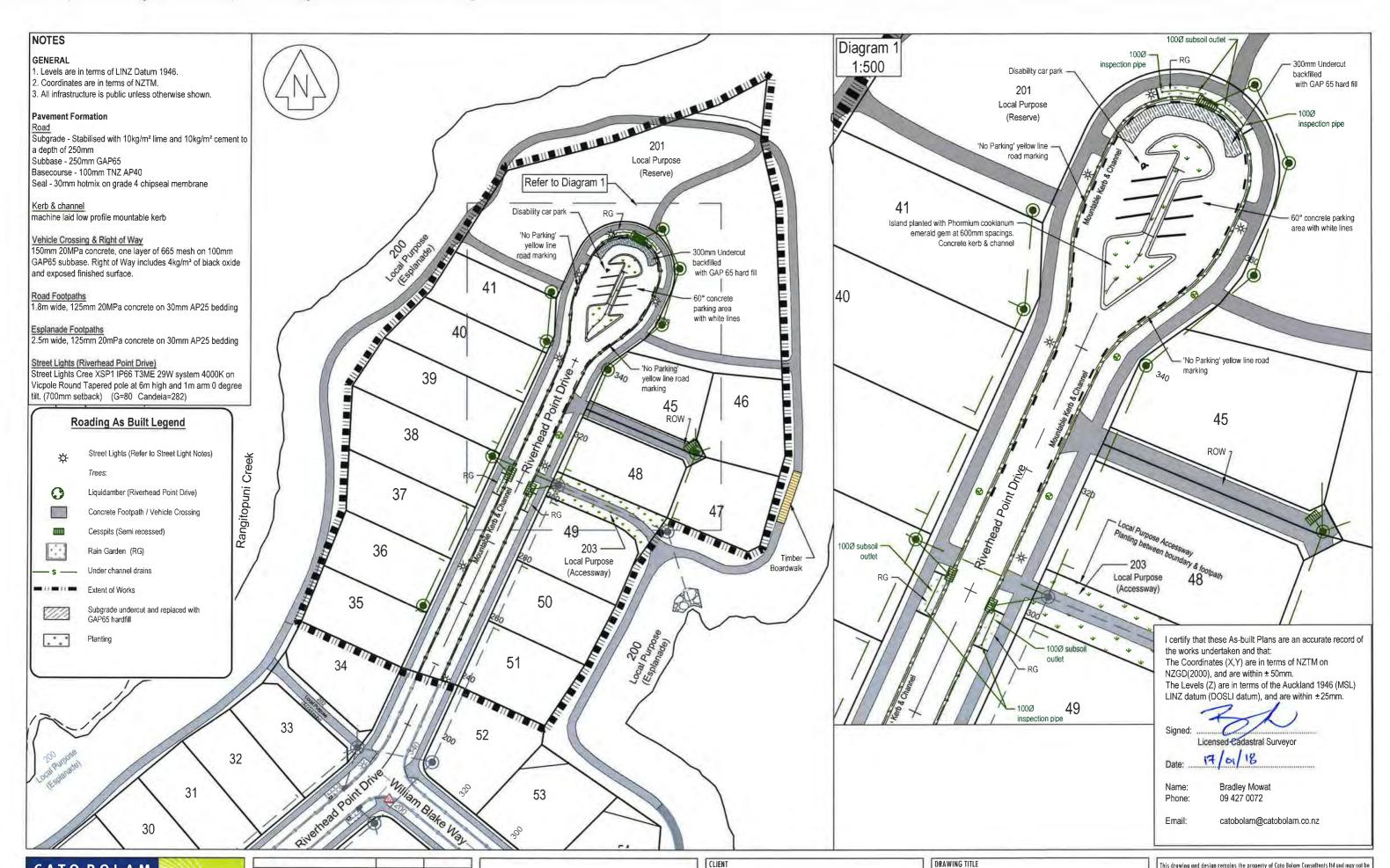
Stormwater Drainage Zone of Influence Plan

LOCATION DIAGRAM

Scale 1:5,000

R67504


ENG60065935


PLANNERS | SURVEYORS | ENGINEERS | ENVIRONMENTAL

CATO BOLAM CONSULTANTS LTD
19 Tamariki Avenue
PO Box 157

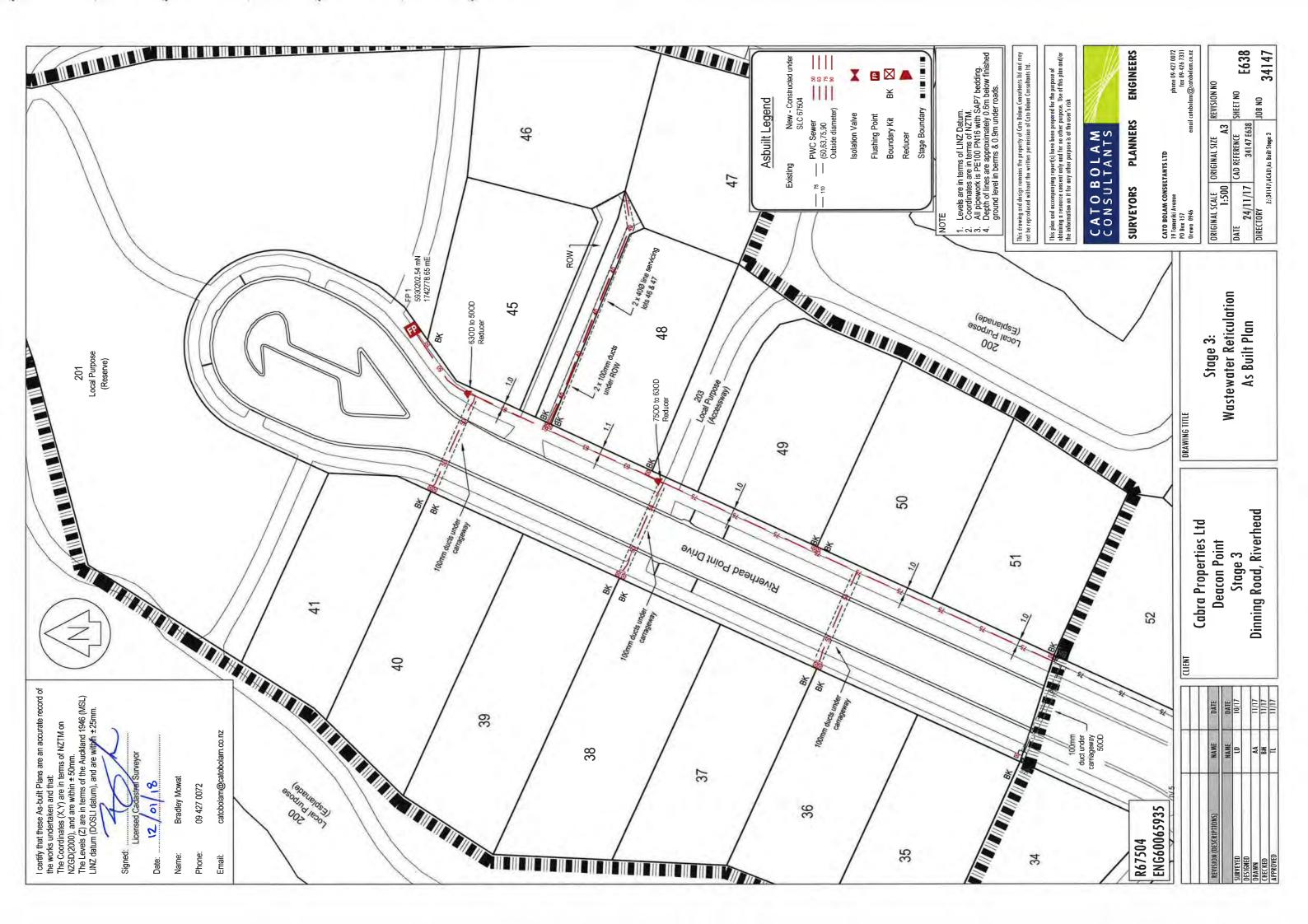
phone 09-427 0072 fax 09-426 7331 nail catobolam@catobolam.co.nz

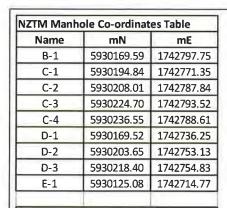
CATO BOLAM CONSULTANTS

PLANNERS | SURVEYORS | ENGINEERS | ENVIRONMENTAL

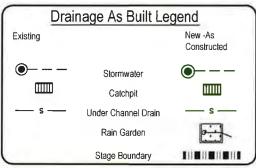
CATO BOLAM CONSULTANTS LTD

19 Tamariki Avenue PO Box 157 Orewa 0946 phone 09-427 0072 fax 09-426 7331 email catobolam@catobolam.co.nz


REVISION (DESCRIPTIONS)	NAME	DATE
	NAME	DATE
SURVEYED	LD & BJ	10/17
DESIGNED		
DRAWN	AA	11/17
CHECKED	BM	11/17
APPROVED	π	11/17


This plan and accompanying report(s) have been prepared for the purpose of obtaining a resource consent oily and for no other purpose. Use of this plan and/or the information on it for any other purpose is at the user's risk

Cabra Properties Ltd
Deacon Point
Stage 3
Dinning Road, Riverhead


Stage 3: Roading As Built Plan This drawing and design remains the property of Cato Bolam Consultants Itd and may not be reproduced without the written permission of Cato Bolam Consultants Itd.

ORIGINAL SCALE	ORIGINAL SIZE	REVISION NO	
1:1000	A3		
DATE	CAD REFERENCE	SHEET NO	F/07
24/11/2017	34147 E637		E637
DIRECTORY		JOB NO	04147
7-\34147\40	AD\As Built Slage 3		34147

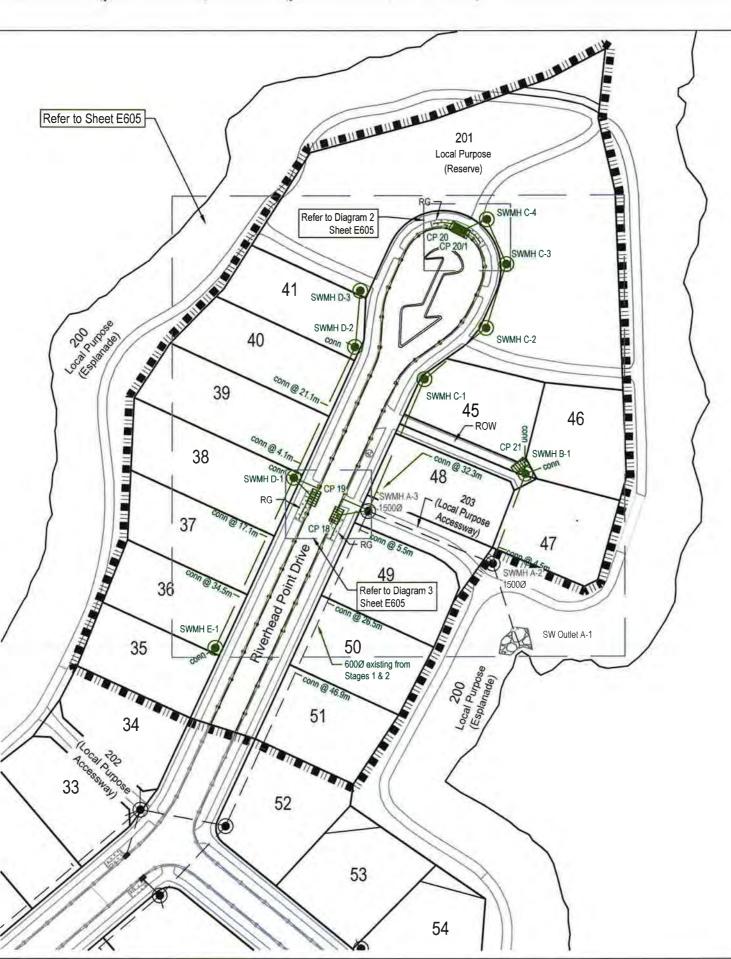
NZTM Catchpit Co-ordinates Table						
Name	mN	mE				
CP 18	5930164.07	1742741.38				
CP 19	5930159.35	1742747.27				
CP 20	5930234.25	1742780.94				
CP 20/1	5930233.74	1742781.86				
CP 21	5930171.62	1742796.11				

I certify that these As-built Plans are an accurate record of the works undertaken and that:

The Coordinates (X,Y) are in terms of NZTM on NZGD(2000), and are within ± 50mm.

The Levels (T) are in terms of the Auckland 1046 (MSL)

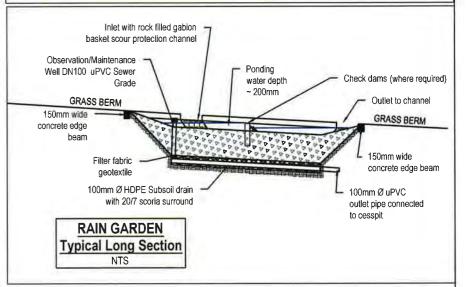
The Levels (Z) are in terms of the Auckland 1946 (MSL) LINZ datum (DOSLI datum), and are within ±25mm.

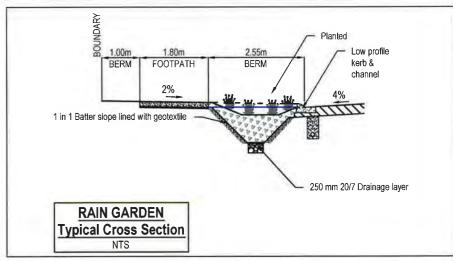

Signed: Licensed Cadastral Surveyo

Name: Bradley Mowat

Phone: 09 427 0072

Email: catobolam@catobolam.co.nz


NOTES


GENERAL

- 1. Levels are in terms of LINZ Datum 1946.
- 2. Coordinates are in terms of NZTM.
- 3. All infrastructure is public unless otherwise shown.

STORMWATER

- 1. All pipes are Class 4 reinforced concrete rubber ring jointed (RCRRJ), unless otherwise shown.
- 2. All manholes are 1050mmØ concrete flange base and riser, unless otherwise shown.
- 2. Bedding is H2 type unless otherwise stated.
- 3. All catchoits are 675mm x 450mm steel grate lids semi recessed unless otherwise shown.
- 4. All lot connections are 100Ø uPVC SEH-C unless otherwise stated.
- 5. All 150Ø pipes are uPVC SEH-C SN16.
- 6. Wall drain outlets to be connected to private drainage at building consent stage.

R67504 ENG60065935

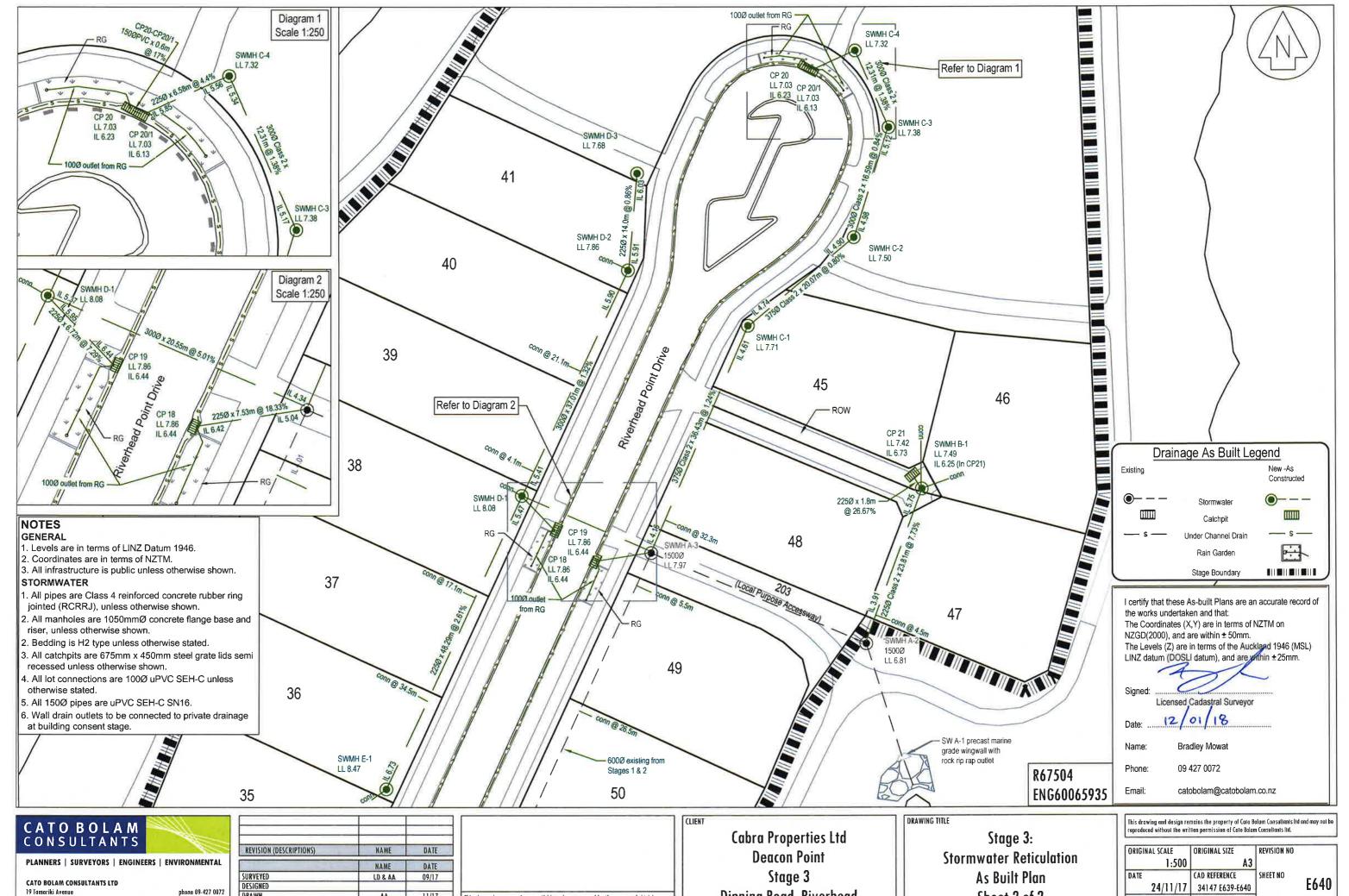
CATO BOLAM CONSULTANTS

PLANNERS | SURVEYORS | ENGINEERS | ENVIRONMENTAL

CATO BOLAM CONSULTANTS LTD

19 Tamariki Avenue PO Box 157 Orewa 1946 phone 09-427 0072 fax 09-426 7337 email catobolam@catobolam.co.nz

REVISION (DESCRIPTIONS)	NAME	DATE
	NAME:	DATE
SURVEYED	LD & AA	09/17
DESIGNED		
DRAWN	AA	11/17
CHECKED	BM	11/17
APPROVED	TL	11/17


This plan and accompanying report(s) have been propered for the purpose of obtaining a resource consent only and for no other purpose. Use of this plan and/or the information on it for any other purpose is at the user's risk

Cabra Properties Ltd
Deacon Point
Stage 3
Dinning Road, Riverhead

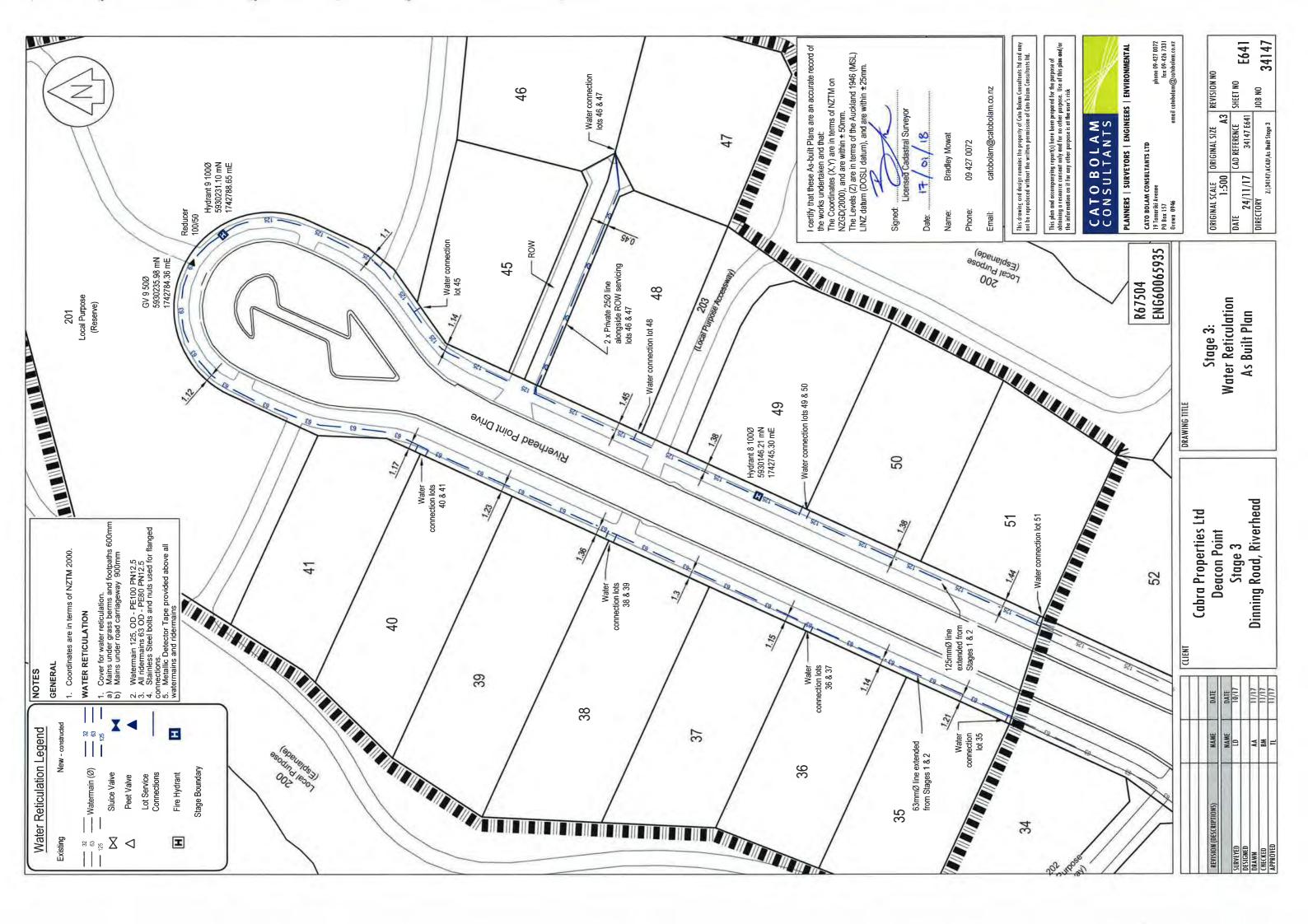
DRAWING TITLE

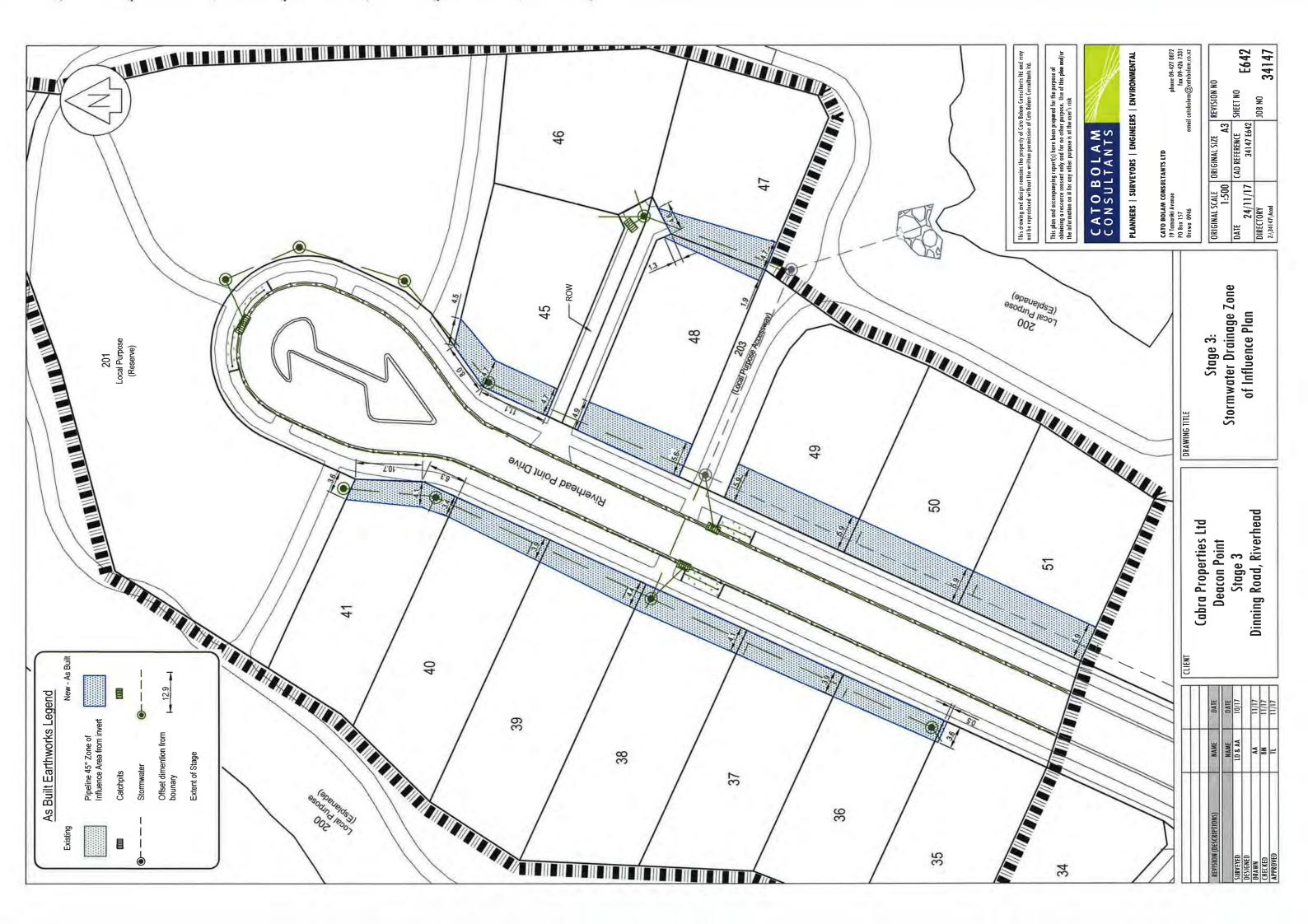
Stage 3: Stormwater Reticulation As Built Plan Sheet 1 of 2 This drawing and design remains the property of Cato Bolam Consultants Itd and may not be

ORIGINAL SCALE	ORIGINAL SIZE	REVISION NO	
1:1000	A3		
DATE	CAD REFERENCE	SHEET NO	E / 00
24/11/17	34147 E639-E640		E639
DIRECTORY	IMAGE FILE	JOB NO	04147
Z:\34147\ACAD\AsBuilt\			34147

PO Box 157

fax 09-426 7331 email catobolam@catobolam.co.nz


REVISION (DESCRIPTIONS)	NAME	DATE
THE R. P. LEWIS CO., LANSING	NAME	DATE
SURVEYED	LD & AA	09/17
DESIGNED		
DRAWN	AA	11/17
CHECKED	BM	11/17
APPROVED	TL	11/17


This plan and accompanying report(s) have been prepared for the purpose of obtaining a resource consent only and for no other purpose. Use of this plan and/or the information of it for any other purpose is at the user's risk

Dinning Road, Riverhead

Sheet 2 of 2

RIGINAL SCALE	ORIGINAL SIZE	REVISION NO	
1:500	A3		
ATE	CAD REFERENCE	SHEET NO	F / 40
24/11/17	34147 E639-E640		E640
IRECTORY	IMAGE FILE	JOB NO	24147
Z:\34147\ACAD\AsBuilt\			34147

Appendix C

Laboratory Test Data

Report No: 16 0033 00

Page: 1 of 1

DETERMINATION OF THE LIQUID LIMIT, PLASTIC LIMIT, PLASTICITY INDEX & LINEAR SHRINKAGE TEST METHOD NZS 4402 : 1986 TEST 2.2, 2.3, 2.4 & 2.6

Job: 29 Dinning Road

Date of order: 19.2.16 Sample origin: Sample method: HA Sample Description: -

Sample By: MB Date: 18.2.16

Test Details:

Test performed on: Whole Sample

History: Natural

Sample No.	Location	Depth (m)	Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)	Linear Shrinkage (LS)	Natural Water Content (%)
E145A	HA2	0.8m - 1.2m	69	24	45	19	26.0
E146A	HA10	0.4m	31	21	10	6	18.6

Comments:

Tested By:	EC	Date :	24.02.16
Calculated By :	EC	Date :	25.02.16
Checked By:	EC	Date :	29.02.16

Report No: 17 0183 00 Page: 1 of 1

DETERMINATION OF THE LIQUID LIMIT & LINEAR SHRINKAGE TEST METHOD NZS 4402: 1986 TEST 2.2 & 2.6

Job: Dinning Road, Riverhead

Sample origin: Date of order: As below

Sample Description: Hand auger Sample method:

Sample By: CMW Geosciences NZ Ltd Date: 29.06.17

Test Details :

Test performed on: Whole Sample

History: Natural

Sample No.	Location	Depth (m)	Liquid Limit	Linear Shrinkage	Natural Water Content (%)
418F	Lot 65	0.4 to 0.6	57	14	30.7
419F	Lot 16	0.4 to 0.6	56	16	30.7

Comments:

Tested By: EC Date: 14.07.17 Calculated By: ZΗ Date: 19.07.17 Checked By: ZΗ Date: 20.07.17

Appendix D

Field Test Data

LF11 Rev 4 Soil Field Density NDM Direct Transmission with VSS Report

Auckland Laboratory CMW Geosciences (NZ) Limited

Building C, 9 Piermark Drive, Rosedale, NZ 0632 PO Box 300206, Albany, Auckland, NZ 0752

Phone: +64 (09) 4144 632

Project: 29 Dinning Road, Riverhead Project No: AKL2015_0326

Location: Riverhead

Report No: AKL2016_0326LAA Rev.0

Report Date: 5/12/2016

Client: Cabra Developments Limited

Client Address: PO Box 197, Orewa 0946

Client Reference:

Test Methods:

NZS 4402.2.1:1986

Solid Density:

Notes:

Testing Locations Selected By:

Assumed CMW Field Staff

NZS 4407.4.2.2:2015 NZGS:August 2001

Tests indicated as not accredited are outside the scope of the laboratory's accreditation

Measurements marked * are not accredited and are outside the scope of the laboratories accreditation

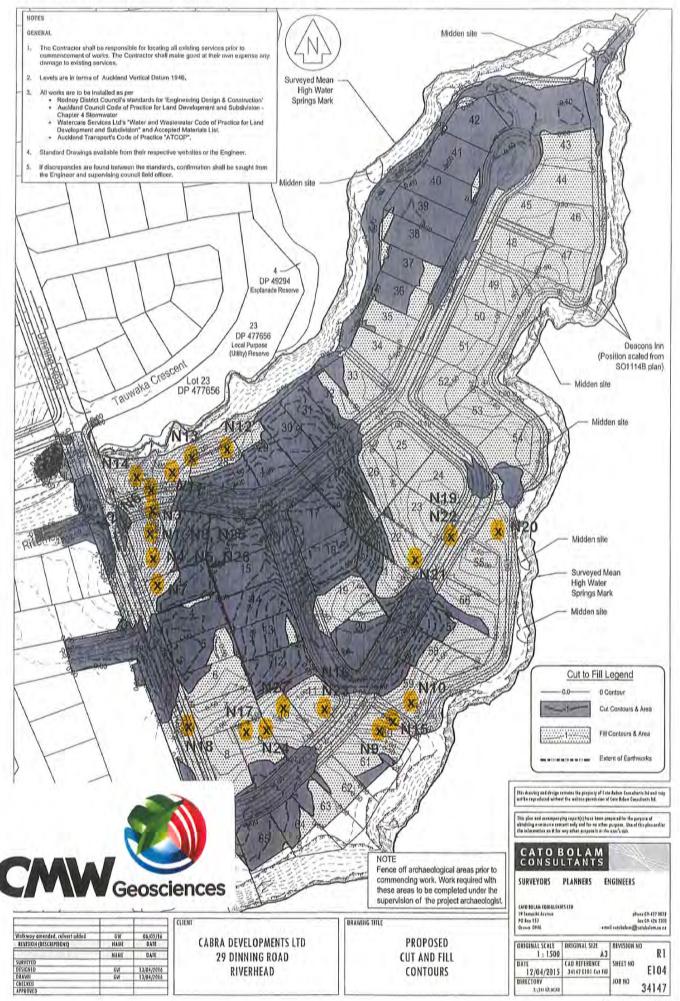
		Test Location	Test Location Soli Description	In-situ Vane Shear Strengths						Field and Laboratory Testing Data								
ate Sampled	Sample No.			Test 1 (kPa)	Test 2 (kPa)	Test 3 (kPa)	Test 4 (kPa)	Ave.	Gauge Wet Density (t/m³)	Gauge Dry Density (t/m³)	Gauge Water Content (%)	Gauge Air Voids (%)	Gauge Probe Depth	Oven Water Content (%)	Solid Density (t/m³) *	Oven Dry Density (t/m³)	Calculated Air Voids (%)	Comment
21/10/2016	N1	Lot 1	CLAY	119	113	127	132	123	1.7840	1.3086	36.3	3.89	300	41.8	2,7	1.26	0,83	Failed
	N2	Road 1	CLAY	94	103	100	113	103	1.7893	1.2463	43.6	-0.58	300	40.9	2.7	1.28	1.0	Failed
28/10/2016	N3	Road 1	CLAY	>189	>189	162	189	>182	1.8754	1.4339	30.8	2.65	300	28.8	2.7	1.46	4.1	Re-test of N2
	N4	Lot 1	CLAY	>189	>189	>189	>189	>189	1.8459	1.4006	31.8	3.49	300	29.7	2.7	1.42	5.0	Re-test of N1
1/11/2016	N5	Lot 1	CLAY	UTP	UTP	UTP	UTP	UTP	1.8568	1.4171	31.0	3,45	300	25.1	2.7	1.48		
	N6	Road 1 Entrance	CLAY	UTP	UTP	UTP	UTP	UTP	1.8781	1.4157	32.7	1.23	300	31.0	2.7	1.44	2.4	
3/11/2016	N7	Lot 3	CLAY	186	167	154	173	170	1.8372	1.3599	35.1	1.80	300	30.2	2.7	1.42	5.1	
	NB	Lot 1	CLAY	181	186	UTP	UTP	184	1.8323	1.3963	31.2	4.59	300	31.6	2.7	1.40		
10/11/2016	N9	Lot 60	CLAY	148	159	178	189	169	1.9667	1.5537	26.6	1.06	250	24.2	2.7	1.58	3.0	
	N10	Lot 59	CLAY	146	159	159	165	157	1,8702	1.4299	30.8	2.91	300	27.3	2.7	1.46	5.5	
	N11	Counterfort 1 North	CLAY	151	186	189	151	169	1.8963	1.4274	32.9	0.13	300	30.5	2.7	1.46		
	N12	Lot 28	CLAY	159	151	178	189	169	1.8746	1.4222	31.8	1,98	300	29.9	2.7	1.44		
11/11/2016	N13	West Gully	CLAY	154	159	140	148	150	1.8919	1.4524	30.3	2.16	300	29.9	2.7	1.46		
	N14	West Gully	CLAY	178	189	>189	>189	>186	1.8613	1.4147	31.6	2.85	300	30.3	2.7	1.42	3.8	
22/11/2016	N15	Lot 60	CLAY	189	151	165	189	174	1.9591	1.5290	28.1	0.26	300	23.9	2.7	1.58	3.7	
	N16-	Lot 11	CLAY	189	148	189	165	173	1.9240	1.5193	26.6	3.17	300	26.3	2.7	1.52		
	N17	Lat 9	CLAY	165	140	189	189	171	1.9545	1.5419	26.8	1.54	300	23.8	2.7	1.58	4.0	
3	N18	West of Lot 7	CLAY	189	189	146	157	170	1.8578	1.4319	29.7	4.29	300	29.4	2,7	1.44	4,6	
	N19	South of Lot 23	CLAY	165	189	>189	>189	>183	1.9085	1,5348	24.3	5.71	300	26.4	2.7	1.50	4.2	
	N20	North of Lot 55	CLAY	UTP	UTP	UTP	UTP	UTP	1.8741	1,4089	33.0	1.20	300	24.7	2.7	1.50	7.2	
24/11/2016	N21	Lot 22	Sandy CLAY	181	165	147	178	168	1.9493	1,5666	24.4	3.62	300	23.3	2.7	1.58	4.6	
	N22	South of Lot 23	Sandy CLAY	140	151	140	146	144	1.9840	1,5828	25.3	1.17	300	24.9	2.7	1.58	1.6	
29/11/2016	N23	Lot 11	CLAY	>189	>189	UTP	UTP	>189	1.9533	1.6101	21.3	5.97	250	22.1	2.7	1.60	5.4	
	N24	Lot 9	CLAY	UTP	UTP	UTP	UTP	UTP	2.0175	1.5963	26.4	-1.34	300	24.5	2.7	1.62	0,29	
	N25	Lot 1 N	CLAY	159	167	167	178	168	1,9583	1.5634	25.3	2.52	300	26.2	2.7	1.56	1.9	
	N26	Lot 1 S	CLAY	159	162	170	154	161	1.9076	1.5170	25.7	4.67	300	24.1	2.7	1.54	6.0	
2/12/2016	N27	Lot 10	CLAY	146	140	165	165	154	1.8827	1.5055	25.0	6.44	300	22.9	2.7	1.54	8.2	

This report should only be reproduced in full.

Created By: TG Checked By: TG

Authorised Signatory:

Date:


Date:

Date:

5/12/2016 6/12/2016

Page:

1 of 2

29 Dinning Road, Riverhead

AKL2016_0326LAB Rev.0

PO Box 197, Orewa 0946

Cabra Developments Limited

AKL2016_0326

Riverhead

11/01/2017

Project:

Project No:

Report No:

Report Date:

Client Address:

Location:

Client:

LF11 Rev 4 Soil Field Density NDM Direct Transmission with VSS Report

Auckland Laboratory

CMW Geosciences (NZ) Limited

Building C, 9 Piermark Drive, Rosedale, NZ 0632

PO Box 300206, Albany, Auckland, NZ 0752

Phone: +64 (09) 4144 632

Test Methods:

Notes:

NZS 4402.2.1:1986 NZS 4407.4.2.2:2015

Solid Density:

Testing Locations Selected By:

Assumed CMW Field Staff

NZGS:August 2001

ACCREDITED LABORATORY

Tests indicated as not accredited are outside the scope of the laboratory's accreditation

Measurements marked " are not accredited and are outside the scope of the laboratories accreditation

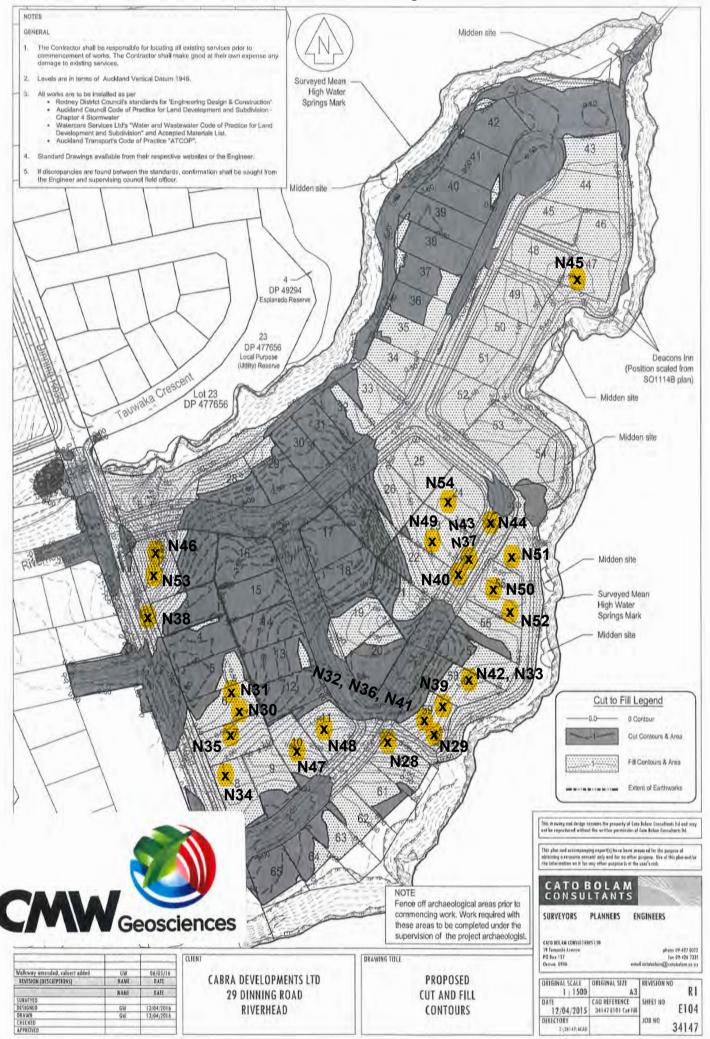
lient Referer	ice:	10 don 1577 Orewa 9540											EDITED LABOR		ratory's accre	litation	a	ccreditation
				li	In-situ Vane Shear Strengths					Field and Laboratory Testing Data								
ate Sampled S	Sample No.	Test Location	Soil Description	Test 1 (kPa)	Test 2 (kPa)	Test 3 (kPa)	Test 4 (kPa)	Ave.	Gauge Wet Density (t/m³)	Gauge Dry Density (t/m³)	Gauge Water Content (%)	Gauge Air Voids (%)	Gauge Probe Depth	Oven Water Content (%)	Solid Density (t/m³)*	Oven Dry Density (t/m³)	Calculated Air Voids (%)*	Comment
2/12/2016	N28	Lot 60	CLAY	178	189	UTP	UTP	184	1.9852	1.6217	22.4	3.50	300	25.0	2.7	1.58	1.5	
	N29	Lot 59	CLAY	165	159	189	UTP	171	1.9678	1.5679	25.5	1.85	300	30.2	2.7	1.52	-1.6	
5/12/2016	N30	Lot 6	CLAY	189	189	>189	>189	>189	1.9432	1.5263	27.3	1.68	250	29.9	2.7	1.50	-0.2	
	N31	Lot 6	CLAY	151	186	189	189	179	1.9223	1.4771	30.8	0.68	200	29.9	2.7	1.48	1.0	
	N32	Lot 59	CLAY	189	148	146	186	167	1.9470	1,5538	25.3	3.04	300	23.2	2.7	1.58	4.8	
	N33	Lot 58	CLAY	162	151	189	189	173	1.8824	1,4506	29.8	3.00	300	29.6	2.7	1.46	3.2	
7/12/2016	N34	Lot 8	Sandy CLAY	162	162	167	151	161	1.9153	1,5425	24.2	5.51	300	24.8	2.7	1.54	5.1	
	N35	Lot 7	Sandy CLAY	UTP	UTP	UTP	UTP	UTP	1.9377	1,5994	21.1	6.86	300	21.8	2.7	1.60	5.4	
	N36	Lot 59	Sandy CLAY	151	159	162	167	160	1.9168	1.5227	25.9	4.10	300	26.8	2.7	1.52	3.5	
	N37	Road between Lot 23 and Lot 55	Sandy CLAY	173	159	143	146	155	1.9195	1.4946	28.4	2.06	300	27.7	2.7	1.50	2.7	
15/12/2016	N38	Refer to site plan	CLAY	UTP	UTP	UTP	UTP	UTP	1,9100	1.5186	25.8	4.53	300	36.7	2.7	1.40	-3.0	
	N39	Lot 59	CLAY	UTP	UTP	UTP	UTP	UTP	1,9302	1.5066	28.1	1.74	300	28.2	2.7	1.50	1,8	
	N40	Refer to site plan	CLAY	173	162	>189	178	>176	1,9091	1.5374	24.2	5.81	300	25.81	2.7	1.52	4.6	
20/12/2016	N41	Lot 59	CLAY	189	178	148	154	167	1.9089	1.5013	27.1	3.55	300	27.1	2.7	1.50	3,7	
	N42	Lot 58	CLAY	189	189	>189	>189	>189	1.8870	1.4821	27.3	4.53	300	28.1	2.7	1.48	4.0	
	N43	Road between Lot 23 and Lot 55	CLAY	UTP	UTP	UTP	UTP	UTP	1.9756	1.5890	24.3	2.40	300	19.9	2.7	1,64	6.2	
	N44	Road SE of lot 24	CLAY	UTP	UTP	UTP	UTP	UTP	1,9289	1.5162	27.2	2.49	300	24.8	2.7	1.54	4.5	
	N45	Lot 47	CLAY	UTP	UTP	UTP	UTP	UTP	1.9287	1.5526	24.2	4.81	300	25.9	2.7	1.54	3.6	
	N46	Lot 1	CLAY	146	146	151	162	151	1.8628	1.3991	33.1	1.71	300	35.2	2.7	1.38	0,5	
22/12/2016	N47	Lot 10	CLAY	189	189	>189	>189	>189	1.8219	1.3367	36,3	1.87	300	38.3	2.7	1.32	0.8	
	N48	Lot 11	CLAY	UTP	UTP	UTP	UTP	UTP	1.8501	1.4081	31.4	3.55	300	33.7	2.7	1.38	2.1	
	N49	Lot 23	CLAY	>189	>189	UTP	UTP	>189	1.9375	1.5395	25,9	3.09	300	24.0	2.7	1.56	4.6	
	N50.	Lot 55	CLAY	UTP	UTP	>189	>189	>189	1.9371	1.5397	25.8	3.15	300	18.3	2.7	1.64	9.4	
30/12/2016	N51	Refer to site plan	CLAY	>194	>194	>194	>194	>194	1.9320	1.5459	25.0	4.06	250	27.3	2.7	1.52	2.3	
	N52	Lot 55	CLAY	>194	>194	>194	>194	>194	1.9141	1.4981	27.8	2.83	200	27.3	2.7	1.50	3.3	
	N53	Lot 1	CLAY	>194	>194	>194	>194	>194	1.9172	1,5182	26.2	3.81	200	30.2	2.7	1.48	1.0	
9/01/2017	N54	Lot 24	CLAY	148	151	162	165	157	1,9105	1.5366	24.3	5.62	250	31.5	2.7	1.46	0.4	

This report should only be reproduced in full.

Created By: TG Checked By: TG

Authorised Signatory:

Date:


Date:

Date:

5/12/2016 11/01/2017 // /0//2017

Page:

1 of 2

29 Dinning Road, Riverhead

AKL2016_0326LAC Rev.0

PO Box 197, Orewa 0946

Cabra Developments Limited

AKL2016_0326

Riverhead

22/08/2017

Project:

Project No:

Report No:

Report Date:

Client Address:

Location:

Client:

LF11 Rev 4 Soil Field Density NDM Direct Transmission with VSS Report

Auckland Laboratory

CMW Geosciences (NZ) Limited

Building C, 9 Piermark Drive, Rosedale, NZ 0632

PO Box 300206, Albany, Auckland, NZ 0752

Phone: +64 (09) 4144 632

Test Methods:

Notes:

NZS 4402.2.1:1986 NZS 4407.4.2.2:2015 Solid Density:

Testing Locations Selected By: C

Assumed CMW Field Staff

NZGS:August 2001

IANZ

Tests indicated as not accredited are outside the scope of the laboratory's accreditation

Measurements marked " are not accredited and are outside the scope of the laboratories accreditation

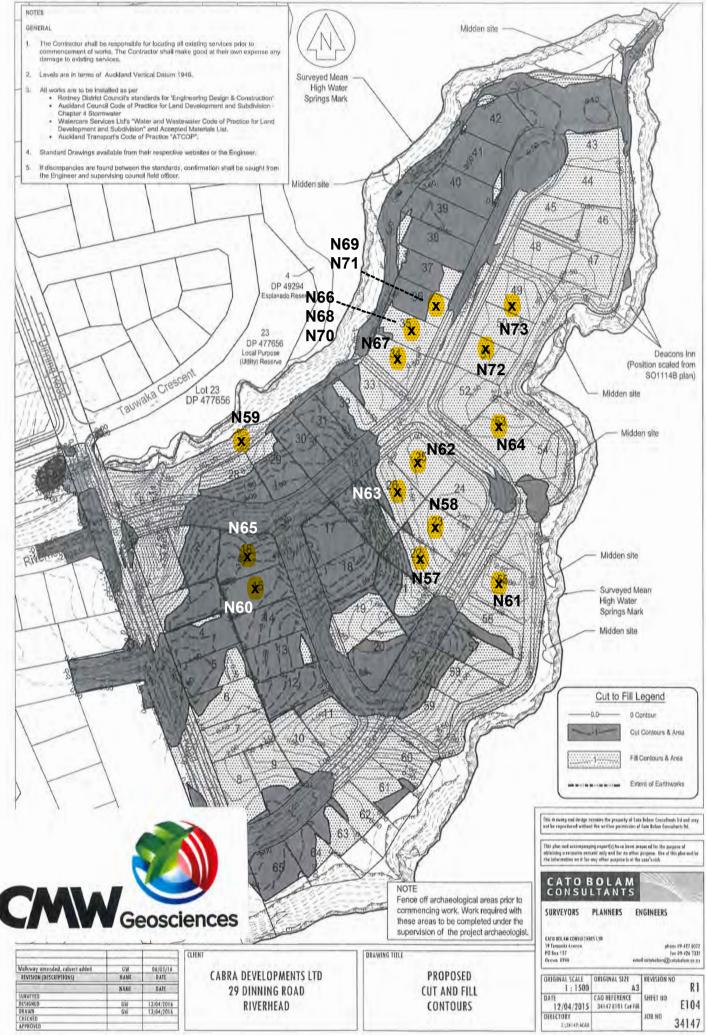
lient Referen	nce:											ACCRE	DITED LABOR	ATORY labor	atory's accred	itation	ā	ccreditation
		Test Location	Soil Description	- In	In-situ Vane Shear Strengths				Field and Laboratory Testing Data									
Date Sampled 5	Sample No.			Test 1 (kPa)	Test 2 (kPa)	Test 3 (kPa)	Test 4 (kPa)	Ave.	Gauge Wet Density (t/m³)	Gauge Dry Density (t/m³)	Gauge Water Content (%)	Gauge Air Voids (%)	Gauge Probe Depth	Oven Water Content (%)	Solid Density (t/m³) *	Oven Dry Density (t/m³)	Calculated Air Voids (%)	Comments
9/01/2017	N55	Lot 55	Stabilised CLAY	186	189	>189	>189	>188	1.9690	1.5147	30,0	-1.64	300	21.6	2.7	1.62	5.1	
	N56	Lot 57	CLAY	>189	>189	UTP	UTP	>189	2.0064	1.6191	23.9	1.21	300	22.1	27	1,64	2.8	
16/01/2017	N57	Lot 22	Sandy CLAY	UTP	UTP	UTP	UTP	UTP	1.9170	1.5581	23.0	6.32	300	22.8	2.7	1,56	6.6	
	N58	Lot 23	Sandy CLAY	UTP	UTP	UTP	UTP	UTP	1.9438	1.5680	24.0	4.26	300	21.5	2.7	1,60	6,4	
	N59	Refer to site plan	Sandy CLAY	UTP	UTP	UTP	UTP	UTP	1.8617	1.4583	27.7	5,56	300	24.2	2,7	1,50	8.2	
	N60	Lot 15	CLAY	UTP	UTP	UTP	UTP	UTP	2.0161	1.6339	23.4	1.18	300	23.1	2.7	1.64	1.5	
25/01/2017	N61	Lot 55	CLAY	UTP	UTP	UTP	UTP	UTP	1.8953	1.4799	28.1	3.56	300	25.5	2.7	1.52	5.6	
	N62	Lot 25	CLAY	UTP	UTP	UTP	UTP	UTP	1.9342	1.5275	26.6	2,67	300	26.6	2.7	1.52	2.8	
	N63	Lot 26	CLAY	151	148	165	146	153	1.9638	1.5707	25.0	2.43	300	24.4	2.7	1.58	3.0	
	N64	Lot 53	CLAY	>189	>189	UTP	UTP	>189	2.0054	1,5871	26,4	-0.70	300	26.2	2.7	1.58	-0.5	
	N65	Lot 16	CLAY	>189	>189	UTP	UTP	>189	1.8715	1.4205	31.8	2.19	300	30.2	2.7	1.44	3.4	
23/02/2017	N66	Lot 35	CLAY	>202	161	>202	180	>186	1.9624	1,5396	27.5	3.23	300	25.4	2.7	1.56	2.3	
	N67	Lot 34	CLAY	>202	UTP	>202	>202	>202	1.9672	1.5840	24.2	5.63	300	24.8	2.7	1.58	2.6	
24/02/2017	N68	Lot 35	CLAY	>219	203	>219	197	>210	1.9279	1,5529	24.1	4.90	300	25.5	2.7	1.54	4.0	
	N69	Lot 36	CLAY	>219	188	156	172	>184	1.8431	1.4810	24.5	8.85	300	25.0	2.7	1.48	8.5	
27/02/2017	N70	Lot 35	CLAY	>219	>219	>219	>219	>219	1.9420	1.5675	23.9	4.41	300	27.0	2.7	1.52	2.1	
	N71	Lot 36	CLAY	>219	>219	>219	>219	>219	1.9601	1.5739	24.5	3.00	300	23.3	2.7	1.58	4.0	
26/04/2017	N72	Lot 51	CLAY	>185	158	161	156	>165	1.9305	1.5308	26.1	3.25	300	26.2	2.7	1.52	3.3	
	N73	Lot 49	CLAY	>185	143	>185	158	>168	1.8960	1.4924	27.0	4.27	300	28.1	2.7	1.48	3,6	

This report should only be reproduced in full.

Created By: TG Checked By: TG

Date:

10/01/2017 22/08/2017


Authorised Signatory: Grag S

Date:

23/08/2017

Page:

1 of 2

LF1.4 Rev.7 Dynamic Cone Penetration (DCP) Test Report NZS 4402: Test 6.5.2: 1988

Auckland Laboratory

CMW Geosciences (NZ) Limited

Building C, 9 Piermark Drive, Rosedale, NZ 0632

PO Box 300206, Albany, Auckland, NZ 0752

Report No:

AKL2016_0326LAD Rev. 0

Project Name:

29 Dinning Road

Project Location:

Riverhead

Project Number:

AKL2016_0326

Test Date:

13/01/2017

Tested By:

IMI / MP

Client:

Clier

Clien

Cabra Developments Limited

Testing Locations Selected By:

Phone: +64 (09) 4144 632

Tests indicated as not accredited are outside the scope of the laboratory's accreditation

Equivalent CBR Values are not accredited and are outside the scope of the laboratory's accreditation

CMW Field Staff

ent Address:	ACCREDITED LABO
ent Reference:	

Test No.		1		2		3		4	5		
Test Location	Ro	ad 2	Road 2								
Chainage & Offset	CH2	0 Left	CH30	0 Right	CH4	0 Left	CHSC	Right	CH60 Left		
Material & Layer:	CLAY / S	Subgrade	CLAY /	Subgrade	CLAY/S	Subgrade	CLAY /	Subgrade	CLAY/	Subgrade	
Depth (mm)	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*							
0 - 100	12	20+	8	18	6	13	4	8	11	20+	
100 - 200	6	13	6	13	5	10	4	8	5	10	
200 - 300	6	13	5	10	5	10	4	8	5	10	
300 - 400	5	10	5	10	5	10	3	6	3	6	
400 - 500	4	8	4	8	4	8	2	4	4	8	
500 - 600	5	10	3	6	5	10	2	4	3	6	
600 - 700	2	4	6	13	4	8	2	4	4	8	
700 - 800	4	8	7	15	5	10	4	8	3	6	
800 - 900	3	6	4	8	5	10	4	8	2	4	
900 - 1000											
Test No.		6	7			3		9		.0	
Test Location	Roa	ad 2	Ro	ad 2	Roa	rd 2	Ros	ad 2	Ros	d 2	
Chainage & Offset	CH70	Right	CH8	0 Left	CH90	Right	CH10	0 Left	CH110 Right		
Material & Layer:	CLAY / S	ubgrade	CLAY / S	Subgrade	CLAY / S	ubgrade	CLAY / S	ubgrade	CLAY / Subgrade		
Depth	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*							
0 - 100	4	8	8	18	15	20+	10	20+	14	20+	
100 - 200	5	10	3	6	9	20	7	15	7	15	
200 - 300	4	8	2	4	5	10	5	10	7	15	
300 - 400	3	6	2	4	6	13	6	13	6	13	
400 - 500	2	4	2	4	10	20+	7	15	5	10	
500 - 600	2	4	2	4	9	20	S	10	4	8	
600 - 700	2	4	2	4	5	10	5	10	6	13	
700 - 800	2	4	2	4	3	6	11	20+	6	13	
800 - 900	2	4	2	4	2	4	8	18	7	15	

Prepared by: Checked by:

IMI

Date:

Date:

17/01/2017

Date:

5/04/2017 5/4/2017

This report should only be reproduced in full

*Equivalent CBR values calculated using AUSTROADS (2010) Guide to Pavement Technology Part 2, Figure 5.3, For Fine Grained Cohesive Soils, and are relevant to fine grained cohesive soils only.

Page 1 of 5

ach Myrell-Johnson

Geosciences

LF14 Rev.7 Dynamic Cone Penetration (DCP) Test Report NZS 4402: Test 6.5.2: 1988

Report No:

AKL2016_0326LAD Rev. 0

Project Name:

29 Dinning Road

Project Location:

Riverhead

Project Number:

AKL2016_0326

Test Date:

13/01/2017

Tested By:

JMJ / MP

Client:

Cabra Developments Limited

Client Address:

Client Reference:

Prepared by:

Checked by:

Authorised Signatory:

IMI

Auckland Laboratory

CMW Geosciences (NZ) Limited

Building C, 9 Piermark Drive, Rosedale, NZ 0632 PO Box 300206, Albany, Auckland, NZ 0752

Phone: +64 (09) 4144 632

Testing Locations Selected By:

CMW Field Staff

This report should only be reproduced in full

*Equivalent CBR values calculated using AUSTROADS (2010) Guide to Pavement Technology Part 2, Figure 5.3, For Fine Grained Cohesive Solls, and are relevant to fine grained cohesive solls only.

Page 2 of 5

fests indicated as not accredited are outside the scope of the laboratory's accreditation

Equivalent CBR Values are not accredited and are outside the scope of the laboratory's accreditation

Client Reference:											
Test No.	1	i	1	.2	1	3	1	4	15		
Test Location	Roa	nd 2	Ros	nd 2	Ros	ad 2	Ros	nd 2	Road 2		
Chainage & Offset	CH12	O Left	CH136	O Right	CH14	IO Left	CH150	Right	CH160 Left CLAY / Subgrade		
Material & Layer:	Clay / S	ubgrade	CLAY / S	ubgrade	CLAY / S	Subgrade	CLAY / S	ubgrade			
Depth (mm)	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*							
0 - 100	17	20+	14	20+	5	10	15	20+	10	20+	
100 - 200	14	20+	8	18	6	13	5	10	3	6	
200 - 300	10	20+	6	13	3	6	3	6	2	4	
300 - 400	6	13	4	8	3	6	2	4	3	6	
400 - 500	6	13	4	8	2	4	3	6	2	4	
500 - 600	4	8	2	4	3	6	3	6	3	6	
600 - 700	4	8	2	4	2	4	2	4	2	4	
700 - 800	4	8	2	4	2	4	3	6	2	4	
800 - 900	4	8	2	4	2	4	2	4	2	4	
900 - 1000									T 1- ' T		
Test No.	t No. 16			17	1	18	1	.9		20	
Test Location	Ros	nd 2	Road 2		Ro	ad 2	Ros	ad 2	Ro	ad 2	
Chainage & Offset	CH176) Right	CH18	80 Left	CH19	0 Right	CH20	00 Left	CH210 Right		
Material & Layer:	CLAY / S	lubgrade	CLAY / S	Subgrade	CLAY / S	Subgrade	CLAY / S	Subgrade	CLAY / Subgrade		
Depth	Blow Count	Equiv CBR*	Blow Count	Equiv CBR+	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	
0 - 100	3	6	3	6	8	18	9	20	15	20+	
100 - 200	1	2	1	2	3	6	5	10	6	13	
200 - 300	1	2	1	2	2	14	4	8	4	8	
300 - 400	2	4	2	4	1	2	4	8	2	4	
400 - 500	1	2	2	4	2	4	3	6	3	6	
500 - 600	2	4	2	4	2	4	4	8	2	4	
600 - 700	1	2	2	.4	1	2	1	2	2	4	
700 - 800	1	2	2	4	2	-4	2	4	2	4	
800 - 900	2	4	2	4	2	4	2	4	2	4	
900 - 1000											

Date:

Date:

17/01/2017

5/04/2017

5/4/2017

LF14 Rov.7 Dynamic Cone Penetration (DCP) Test Report NZ5 4402: Test 6.5.2: 1988 AK12016_0326LAD Rev. 0 Auckland Laboratory 29 Dinning Road Project Name: CMW Geosciences (NZ) Limited Building C, 9 Piermark Drive, Rosedale, NZ 0632 Project Location: Riverhead PO Box 300206, Albany, Auckland, NZ 0752 Phone: +64 (09) 4144 632 Project Number: AKL2016_0326 13/01/2017 Test Date: Testing Locations Selected By: CMW Field Staff Tested By: IMI / MP Tests indicated as not accredited are outside the scope of the laboratory's accreditation Client: Cabra Developments Limited Equivalent CBR Values are not accredited and are outside the scope of the Client Address: laboratory's accreditation Client Reference: Test No. 21 22 23 25 Test Location Road 2 Road 2 Road 2 Road 2 Road 2 Chainage & Offset CH220 Left CH230 Right CH240 Left CH250 Right CH260 Left Material & Layer: Clay / Subgrade Depth (mm) Blow Count Equiv CBR* 0 - 100 8 18 6 13 6 13 3 6 100 - 200 5 10 4 4 8 10 8 200 - 300 5 10 4 2 4 1 2 15 300 - 400 4 8 3 1 2 2 4 400 - 500 4 8 3 6 1 2 1 2 1 2 500 - 600 3 6 3 6 2 4 600 - 700 4 8 4 8 1 2 1 2 2 700 - 800 4 8 3 6 1 5 1 2 800 - 900 4 8 2 4 2 4 2 4 2 4 900 - 1000 Test No. 26 27 28 29 30 Test Location Road 2 Road 2 Road 2 Road 2 Road 2 Chainage & Offset CH270 Right CH280 Left CH290 Right CH300 Left CH310 Right CLAY / Subgrade Material & Layer: CLAY / Subgrade CLAY / Subgrade CLAY / Subgrade CLAY / Subgrade Depth Blow Count Equiv CBR* 0 - 100 10 204 13 20+ 6 13 4 100 - 200 5 9 10 15 4 8 200 - 300 4 8 5 10 4 8 3 6 300 - 400 3 6 4 8 4 8 7 15 400 - 500 4 6 4 g 6 13 500 - 600 1 2 4 3 6 2 4 600 - 700 2 4 2 3 6 2 4 700 - 800 2 4 2 4 2 2 4 800 - 900 2 4 2 4 2 2 900 - 1000 This report should only be reproduced in full Prepared by: *Equivalent CBR values calculated using AUSTROADS (2010) Guide to Pavement Technology Part 2, Figure 5.3, For Fine Grained Cohesive Soils, and Date: 17/01/2017 Lad Myself - John Date Myself - JOHNSON Date: are relevant to fine grained cohesive soils only. 5/04/2017 Authorised Signatory: 5/4/2017 Page 3 of 5

LF14 Rev.7 Dynamic Cone Penetration (DCP) Test Report NZS 4402; Test 6.5.2; 1988 AKL2016_0326LAD Rev. 0 Report No: Auckland Laboratory Project Name: 29 Dinning Road CMW Geosciences (NZ) Limited Building C, 9 Piermark Drive, Rosedale, NZ 0632 Project Location: Riverhead PO Box 300206, Albany, Auckland, NZ 0752 Phone: +64 (09) 4144 632 AKL2016_0326 Project Number: Test Date: 13/01/2017 Testing Locations Selected By: CMW Field Staff Tested By: JM1/MP Tests indicated as not accredited are outside the scope of the laboratory's accreditation Cabra Developments Limited Client: Equivalent CBR Values are not accredited and are outside the scope of the Client Address: laboratory's accreditation Client Reference: Test No. Road 2 Road 2 Test Location CH320 Left CH330 Right Chainage & Offset Clay / Subgrade CLAY / Subgrade Material & Laver: Depth (mm) Blow Count Equiv CBR* 0-100 Б 13 8 100 - 200 1 20 2 4 20 500 - 600 4 13 600 - 700 2 4 4 8 700 - 800 2 800 - 900 2 4 2 4 900 - 1000 Test No. Test Location Chainage & Offset Material & Layer: Depth Blow Count Equiv CBR* Blow Count Equiv CBR* Blow Count Equiv CBR* Blow Count Equiv CBR* Blow Count Equiv CBR*

0 - 100 100 - 200 200 - 300 300 - 400 400 - 500 500 - 600 600 - 700 800 - 900 900 - 1000

Prepared by:

Date:

17/01/2017

Authorised Signatory: Jad Mynth - Janes Mynth - Johnson

5/04/2017 5/4/2017 This report should only be reproduced in full

*Equivalent CBR values calculated using AUSTROADS (2010) Guide to Pavernent Technology Part 2, Figure 5.3, For Fine Grained Cohesive Soils, and are relevant to fine grained cohesive soils only.

Page 4 of 5

	- 3		
REVISION (DESCRIPTIONS)	NAME	DATE	
SURVEYED	_I	I	
SURVEYED DESIGNED	GW	08/04/16	
DESIGNED	G/A G/A	08/04/16 08/04/16	

CABRA DEVELOPMENTS LTD 29 DINNING ROAD RIVERHEAD

CLIENT

ROAD LAYOUT

DRAWING TITLE

| PO Bex 157 | Isa 09-126 T31 | Isa 09-1

Auckland Laboratory

CMW Geosciences (NZ) Limited

Building C, 9 Piermark Drive, Rosedale, NZ 0632 PO Box 300206, Albany, Auckland, NZ 0752

Report No:

AKL2016 0326LAE Rev. 0

Project Name:

29 Dinning Road

Project Location:

Project Number:

AKL2016_0326

Test Date:

16/01/2017

Tested By:

imi

Client:

Client Address:

Eabre Developments Limited

Phone: +64 (09) 4144 632

Testing Locations Selected By:

Tests indicated as not accredited are outside the scopa of the laboratory's accreditation

Equivalent CBR Values are not accredited and are outside the scope of the laboratory's accreditation

CMW Field Staff

Client Reference:

chent neretence.	J									
Test No.		1		2		3		4		s
Test Location	Ro	ad 1	Ro	ad 1	Ro	ad 1	Ro	ad 1	Ro	ad 1
Chainage & Offset	CH1	0 Left	CH20	Right	СНЗ	D Left	CH4C	Right	CHS	0 Left
Material & Layer:	CLAY / S	Subgrade	CLAY / S	Subgrade	CLAY / S	CLAY / Subgrade		Subgrade	CLAY /	Subgrade
Depth (mm)	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*
0 - 100	9	20	7	15	11	20+	8	18	6	13
100 - 200	10	20+	5	10	7	15	7	15	6	13
200 - 300	7	15	3	6	4	8	4	8	3	6
300 - 400	6	13	4	8	6	13	3	6	3	6
400 ~ 500	6	13	4	8	3	6	2	4	4	8
500 - 600	5	10	3	6	9	10	3	6	. 3	6
600 - 700	5	10	4	8	2	4	3	6	4	8
700 - 800	6	13	2	4	2	4	2	4	3	6
800 - 900	6	13	2	4	2	4	3	6	4	8
900 - 1000										
Test No.	- 6			7		3	1 1	9		10
Test Location	Ros	rd 1	Road 1		Ros	d 1	Roa	ed 1	Ros	ad 1
Chainage & Offset	CH60	Right	CH70) Left	CH80	Right	CH90 Left		CH10	0 Right
Material & Layer:	CLAY / 5	ubgrade	CLAY / S	iubgrade	CLAY / Subgrade		CLAY / Subgrade		CLAY / Subgrade	
Depth	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*
0 - 100	5	10	11	20+	1	2	4	8	3	6
100 - 200	4	8	7	15	2	4	4	8	6	13
200 - 300	2	4	6	13	3	6	4	8	4	8
300 - 400	3	6	5	10	3	5	4	8	2	4
400 - 500	2	4	2	4	3	6	4	8	2	4
500 - 600	3	5	4	8	3	6	4	8	3	6
600 - 700	5	10	2	4	4	8	3	6	2	4
700 - 800	4	8	2	4	3	6	2	4	3	6
800 - 900	4	8	2	4	3	6	3	6	4	8
900 - 1000										

Prepared by:

Date:

17/01/2017

Checked by:

Authorised Signatory:

LAN Myself- Johnson Date:

JANN MYNETT-JOHNSON

5/04/2017

5/4/2017

This report should only be reproduced in full

*Equivalent CBR values calculated using AUSTROADS (2010) Guide to Pavement Technology Part 2, Figure 5.3, For Fine Grained Cohesive Soils, and are relevant to fine grained cohesive soils only.

Report No:

AKL2016_0326LAE Rev. 0

Project Name:

29 Dinning Road

Project Location:

Riverhead

Project Number:

AKL2016_0326

Test Date:

16/01/2017

Tested By:

IMI

Client:

Cabra Developments Limited

Client Address:

Client Reference:

Auckland Laboratory

CMW Geosciences (NZ) Limited

Building C, 9 Piermark Drive, Rosedale, NZ 0632 PO Box 300206, Albany, Auckland, NZ 0752

Phone: +64 (09) 4144 632

Testing Locations Selected By:

CMW Field Staff

Tests indicated as not accredited are outside the scope of the laboratory's accreditation

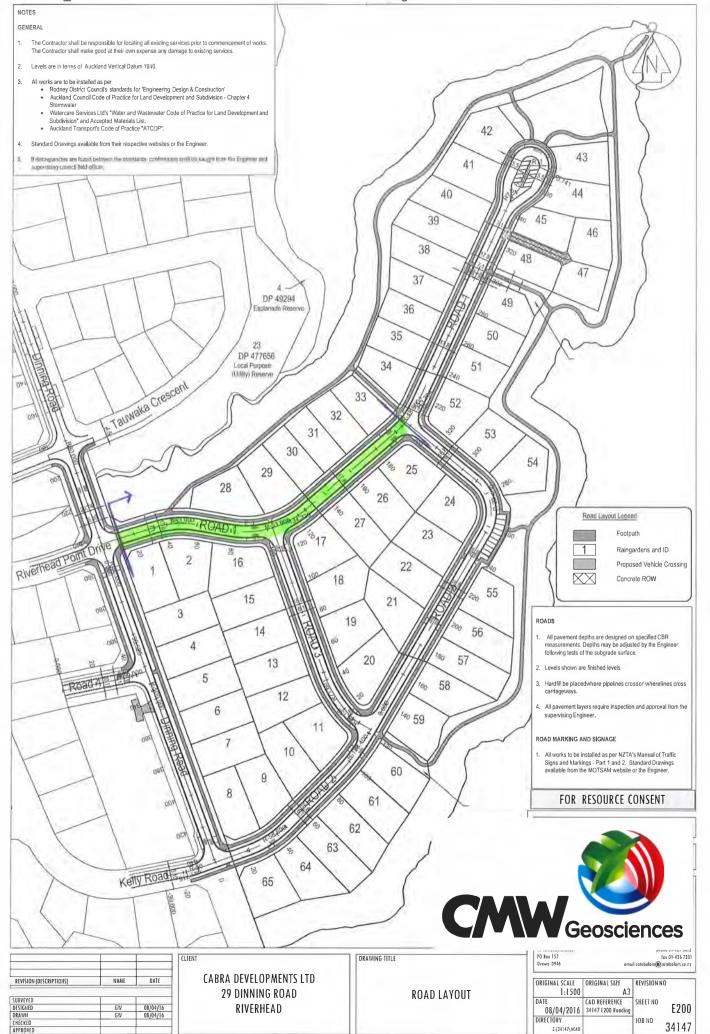
Equivalent CBR Values are not accredited and are outside the scope of the laboratory's accreditation

Test No.	1	1	1	.2		3	1	4		5
Test Location	Ro	ad 1	Ros	ad 1	Roa	od 1	Ros	ad 1	Ro	ad 1
Chainage & Offset	CH11	O Left	CH12	O Right	CH13	0 Left	CH140) Right	CH15	io Left
Material & Layer:	CLAY / S	ubgrade	CLAY / S	ubgrade	CLAY / S	ubgrade	CLAY / S	ubgrade	CLAY / S	Subgrade
Depth (mm)	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*
0 - 100	10	20+	0	ó	7	15	4	8	i	2
100 - 200	9	20	0	O	5	10	4	8	1	2
200 - 300	5	10	1	2	6	13	5	10	1	2
300 - 400	3	6	0	0	6	13	4	8	0	0
400 - 500	2	4	3	6	5	10	3	6	1	2
500 - 600	2	4	4	8	4	8	1	2	0	0
600 - 700	2	4	3	6	3	6	1	2	i.	2
700 - 800	3	6	2	4	4	8	0	0	i	2
800 - 900	2	4	2	4	4	8	1	2	2	4
900 - 1000										
Test No.	1	.6	1	7	1	8	1	9	1	20
Test Location	Ro	nd 1	Road 1		Ros	id i	Ros	id i	Ro	nd 1
Chainage & Offset	CH16	Right	CH170 Left		CHISC	Right	CH19	0 Left	CH20	0 Right
Material & Layer:	CLAY/S	ubgrade	CLAY / Subgrade		CLAY / Subgrade		CLAY / S	ubgrade	CLAY / S	Subgrade
Depth	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR+
0 - 100	7	15	7	15	5	10	12	20+	10	20+
100 - 200	3	6	4	8	8	18	10+	20+	6	13
200 - 300	2	4	2	4	4	8			17+	20+
300 - 400	2	4	3	6	4	8				
400 - 500	2	4	3	6	1	2				
500 - 600	3	6	4	8	1	2				
600 - 700	2	4	3	6	1	2				
700 - 800	2	4	3	6	1	2				
800 - 900	2	4	3	6	2	4				

Prepared by: Checked by: IMI

Date:

17/01/2017


Date:

5/04/2017

*Equivalent CBR values calculated using AUSTROADS (2010) Guide to Pavement Technology Part 2, Figure 5.3, For Fine Grained Cohesive Soils, and are relevant to fine grained cohesive soils only.

Authorised Signatory:

5/4/2017

Auckland Laboratory CMW Geosciences (NZ) Limited

Phone: +64 (09) 4144 632

Testing Locations Selected By:

Building C, 9 Piermark Drive, Rosedale, NZ 0632 PO Box 300206, Albany, Auckland, NZ 0752

Report No:

AKL2016_0326LAF Rev. 0

Project Name:

29 Dinning Road

Project Location:

Project Number:

AKL2016_0326

Test Date:

16/01/2017

Tested By:

Client:

Cabra Developments Limited

Client Address;

Equivalent CBR Values are not accredited and are outside the scope of the laboratory's accreditation

CMW Field Staff

Client Reference:

	- Annual Control of the Control of t									
Test No.		1		2	i	3		4		5
Test Location	Dinnir	ng Road	Dinnin	ig Road	Dinnin	g Road	Dinnin	g Road	Dinnir	g Road
Chainage & Offset	CH2	50 Left	CH27	0 Right	CH28	O Left	CH29	O Right	СНЗС	00 Left
Material & Layer:	CLAY /	Subgrade	CLAY/	Subgrade	CLAY / S	ubgrade	CLAY/S	ubgrade	CLAY / S	Subgrade
Depth (mm)	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*
0 - 100	4	8	9	20	8	18	9	20	10	20+
100 - 200	3	6	5	10	6	13	8	18	10+	20+
200 - 300	3	6	4	8	2	4	8	18		
300 - 400	3	6	4	g	2	4	9	20		
400 - 500	3	6	4	8	4	8	6	13		
500 - 600	4	8	2	4	7	15	6	13		
600 - 700	4	8	3	6	5	10	4	8		
700 - 800	4	8	3	6	5	10	2	4		
800 - 900	4	8	4	8	6	13	2	4		
900 - 1000							ALCOHOL: U			
Test No.		6		7		3		9	1	.0
est Location	Dinnin	g Road	Dinnin	g Road	Dinnin	g Road	Dinnin	g Road	Dinning Road	
Chainage & Offset	CH31	0 Right	CH32	0 Left	CH330	Right	CH34	0 Left	CH350 Right	
Material & Layer:	CLAY / S	Subgrade	CLAY / S	ubgrade	CLAY / S	ubgrade	CLAY / S	ubgrade	CLAY / Subgrade	
Depth	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*
0 - 100	7	15	7	15	10	20+	10+	20+	12	20+
100 - 200	4	В	5	10	6	13			8	18
200 - 300	3	5	4	8	5	10			4	8
300 - 400	3	6	3	6	4	8			3	6
400 - 500	4	8	4	8	5	10			4	8
500 - 600	4	8	4	8	4	8			3	6
600 - 700	4	8	2	4	3	6			2	4
700 - 800	4	8	3	5	2	4			2	4
800 - 900	4	8	2	4	1	2			2	4
900 - 1000										

Prepared by: Checked by:

Date:

17/01/2017

Date:

5/04/2017 5/4/2017

This report should only be reproduced in full

*Equivalent CBR values calculated using AUSTROADS (2010) Guide to Pavement Technology Part 2, Figure 5.3, For Fine Grained Cohesive Soils, and are relevant to fine grained cohesive soils only.

Authorised Signatory: Tack MYLTT-JOHASON

Report No:

AKL2016_0326LAF Rev. 0

Project Name:

29 Dinning Road

Project Location:

Project Number:

AKL2016_0326

Test Date:

16/01/2017

Tested By:

Client:

Cabra Developments Limited

Client Address:

Client Reference:

Auckland Laboratory

CMW Geosciences (NZ) Limited

Building C, 9 Piermark Drive, Rosedale, NZ 0632

PO Box 300206, Albany, Auckland, NZ 0752

Phone: +64 (09) 4144 632

Testing Locations Selected By:

CMW Field Staff

Tests indicated as not accredited are outside the scope of the laboratory's accreditation

Equivalent CBR Values are not accredited and are outside the scope of the laboratory's accreditation

23.215.221.2221.22					La dia					
Test No.	1	11	1	12	1	13		14	4	15
Test Location	Dinnin	ng Road	Dinnin	ig Road	Dinnin	g Road	Dinnir	g Road	Dinnir	g Road
Chainage & Offset	CH36	io Left	CH37	O Right	CH38	O Left	CH39	Ó Right	CH40	00 Left
Material & Layer:	CLAY / S	Subgrade	CLAY / S	Subgrade	CLAY / S	Subgrade	CLAY/	Subgrade	CLAY/	Subgrade
Depth (mm)	Blow Count	Equiv CBR*	Blow Count	Equiv CBR						
0 - 100	10	20+	9	20	7	15	6	13	14	20+
100 - 200	11	20+	6	13	7	15	7	15	6	4
200 - 300	11	20+	3	6	9	20	4	8	2	4
300 - 400	8	18	2	4	7	15	2	4	2	4
400 - 500	7	15	2	4	5	10	3	6	2	4
500 - 600	4	8	5	10	3	6	2	4	2	4
600 - 700	5	10	5	10	3	6	2	4	2	4
700 - 800	6	13	5	10	2	4	2	4	2	4
800 - 900	6	13	4	8	2	4	2	4	2	4
900 - 1000										
Test No.	1	.6	1	7						
Test Location	Dinnin	g Road	Dinnin	g Road						
Chainage & Offset	CH410	O Right	CH42	0 Left						
Material & Layer:	CLAY/S	ubgrade	CLAY / S	ubgrade						
Depth	Blow Count	Equiv CBR*	Blow Count	Equiv CBR						
0-100	7	15	4	8						
100 - 200	9	20	7	15						
200 - 300	4	8	6	13						
300 - 400	4	8	3	6						
400 - 500	3	6	2	4						
500 - 600	3	6	3	6						
600 - 700	2	4	2	4						
700 - 800	2	4	2	4						
800 - 900	2	4	2	4						

Prepared by: Checked by:

IMI

Date:

17/01/2017

5/04/2017 5/4/2017

*Equivalent CBR values calculated using AUSTROADS (2010) Guide to Pavement Technology Part 2, Figure 5.3, For Fine Grained Cohesive Soils, and are relevant to fine grained cohesive soils only.

Page 2 of 3

JACK MYVETT-JOHRSON Authorised Signatory:

29 DINNING ROAD

RIVERHEAD

08/04/2016	SHEET NO	E200
IRECTORY 2:\34147\ACAD	JOB NO	34147

ROAD LAYOUT

Auckland Laboratory

CMW Geosciences (NZ) Limited

Building C, 9 Piermark Drive, Rosedale, NZ 0632

PO Box 300206, Albany, Auckland, NZ 0752

Report No:

AKL2016_0326LAG Rev.0

Project Name:

29 Dinning Road

Project Location:

Riverhead

Project Number:

AKL2016_0326

Test Date:

3/02/2017

Tested By:

Client:

AP / JMJ

Client Address:

Cabra Developments Limited

Phone: +64 (09) 4144 632

Testing Locations Selected By:

Tests indicated as not accredited are outside the scope of the laboratory's accreditation

Equivalent CBR Values are not accredited and are outside the scope of the laboratory's accreditation

CMW Field Staff

Client Reference:

Sugar regulations										
Test No.		1		2		3		4	11	5
Test Location	Ros	ad 3	Ro	ad 3						
Chainage & Offset	CH1	0 Left	CH2C	Right	СНЗ	0 Left	CH40	Right	CHS	0 Left
Material & Layer:	CL	.AY	CL	AY	CL	AY	CL	AY	C	AY
Depth (mm)	Blow Count	Equiv CBR*	Blow Count	Equiv CBR=						
0 - 100	14	20+	6	13	7	15	10	20+	17	20+
100 - 200	7	15	5	10	5	10	5	10	6	13
200 - 300	6	13	3	6	4	8	3	6	5	10
300 - 400	3	6	3	6	3	6	3	6	3	6
400 - 500	2	4	3	6	2	4	3	6	3	6
500 - 600	2	4	3	6	3	6	2	4	2	4
600 - 700	2	4	2	4	1	2	2	4	3	6
700 - 800	2	4	3	6	2	4	2	4	3	6
800 - 900	4	8	2	4	2	4	2	4	2	4
900 - 1000	2	4	3	6	3	6	2	4	2	4
Test No.		6	7		1	В		9		10
Test Location	Roa	ad 3	Road 3		Road 3		Roa	nd 3	Ro	ad 3
Chainage & Offset	CH60	Right	CH7	D Left	CH80	Right	CH90) Left	CH10	0 Right
Material & Layer:	CL	AY	cı	AY	CLAY		CLAY		CLAY	
Depth	Blow Count	Equiv CBR*								
0 - 100	12	20+	6	13	4	8	3	6	3	6
100 - 200	7	15	3	6	2	4	4	8	5	10
200 - 300	3	6	2	4	1	2	5	10	3	6
300 - 400	3	6	2	4	2	4	7	15	3	6
400 - 500	5	10	2	4	2	4	6	13	2	4
500 - 600	UTP	UTP	1	2	2	4	9	20	3	6
600 - 700			2	4	2	4	10	20+	5	10
700 - 800			2	4	2	4	11	20+	13+	20+
800 - 900			3	6	3	6	10	20+	UTP	UTP
900 - 1000			2	4	4	8	10	20+		

Prepared by:

Authorised Signatory:

Cu

Date:

7/02/2017

7/02/2017

7/2/2017

Date:

This report should only be reproduced in full

*Equivalent CBR values calculated using AUSTROADS (2010) Guide to Pavement Technology Part 2, Figure 5.3, For Fine Grained Cohesive Soils, and are relevant to fine grained cohesive soils only.

Auckland Laboratory

CMW Geosciences (NZ) Limited

Phone: +64 (09) 4144 632

Testing Locations Selected By:

Building C, 9 Piermark Drive, Rosedale, NZ 0632

PO Box 300206, Albany, Auckland, NZ 0752

Report No:

AKL2016_0326LAG Rev.0

Project Name:

29 Dinning Road

Project Location:

Project Number:

AKL2016_0326

Test Date:

3/02/2017

Tested By:

AP / JMJ

Client Address:

Prepared by:

Checked by:

Authorised Signatory: 🕡

TG

CS

Client Reference:

Client:

Cabra Developments Limited

Tests indicated as not accredited are outside the scope of the laboratory's accreditation

*Equivalent CBR values calculated using AUSTROADS (2010) Guide to Pavement Technology Part 2, Figure 5.3, For Fine Grained Cohesive Soils, and are relevant to fine grained cohesive soils only.

Page 2 of 4

Equivalent CBR Values are not accredited and are outside the scope of the laboratory's accreditation

CMW Field Staff

PUSILILUZIA GIUC-I										
Test No.		11		12	1	1.3	-	14		5
Test Location	Ro	ad 3	Ro	ad 3	Ros	ad 1	Ro	ad 1	Ro	ad 1
Chainage & Offset	CH1	O Left	CH12	0 Right	CH21	O Left	CH22	O Right	CH23	0 Left
Material & Layer:	C	АУ	C	LAY	CI	AY	d	AY	Ci	AY
Depth (mm)	Blow Count	Equiv CBR*	Blow Count	Equiv CBR						
0 - 100	4	g	5	10	5	10	9	20	7	15
100 - 200	2	4	3	6	5	10	7	15	6	13
200 - 300	3	6	5	10	2	4	6	13	3	6
300 - 400	3	6	4	8	1	2	3	6	2	4
400 - 500	4	8	3	6	1	2	2	4	2	4
500 - 600	6	13	4	8	2	4	2	4	1	2
600 - 700	7	15	4	8	2	4	2/	4	2	4
700 - 800	6	13	4	8	2	4	2	4	1	2
800 - 900	10	20+	5	10	2	4	i	2	2	4
900 - 1000	10	20+	5	10	2	4	2	4	2	4
l'est No.	16			17	1	.8		9	2	0
Test Location	Road 1		Road 1		Roz	ad 1	Ro	rd 1	Roa	d 1
Chainage & Offset	CH24	O Right	CH250 Left		CH260	O Right	CH27	O Left	CH280	Right
Material & Layer:	CI	AY	CLAY		CLAY		CLAY		CL	AY
Depth	Blow Count	Equiv CBR*								
0 - 100	10	20+	7	15	10	20+	11	20+	6	13
100 - 200	11	20+	7	15	11	20+	7	15	7	15
200 - 300	7	15	4	8	8	18	8	18	5	10
300 - 400	8	18	5	10	4	8	5	10	4	8
400 - 500	3	6	2	4	4	8	3	6	5	10
500 - 600	3	6	2	4	4	8	2	4	3	6
600 - 700	2	4	2	4	4	8	3	6	2	4
			100		2	4	2	4	2	4
700 - 800	2	- 4	2	4						
	2 2	4	2	4	2	4	2	4	2	4

7/02/2017

7/02/2017

7/2/2017

Date:

Date:

Date:

Report No:

AKL2016_0326LAG Rev.0

Project Name:

29 Dinning Road

Project Location:

Riverhead

Project Number:

AKL2016_0326

Test Date:

3/02/2017

Tested By: Client:

AP/JMJ

Prepared by:

Checked by:

Authorised Signatory:

TG

Cabra Developments Limited

Client Address:

Client Reference:

Auckland Laboratory

CMW Geosciences (NZ) Limited

Building C, 9 Piermark Drive, Rosedale, NZ 0632

PO Box 300206, Albany, Auckland, NZ 0752 Phone: +64 (09) 4144 632

Testing Locations Selected By:

CMW Field Staff

Tests indicated as not accredited are outside the scope of the laboratory's accreditation.

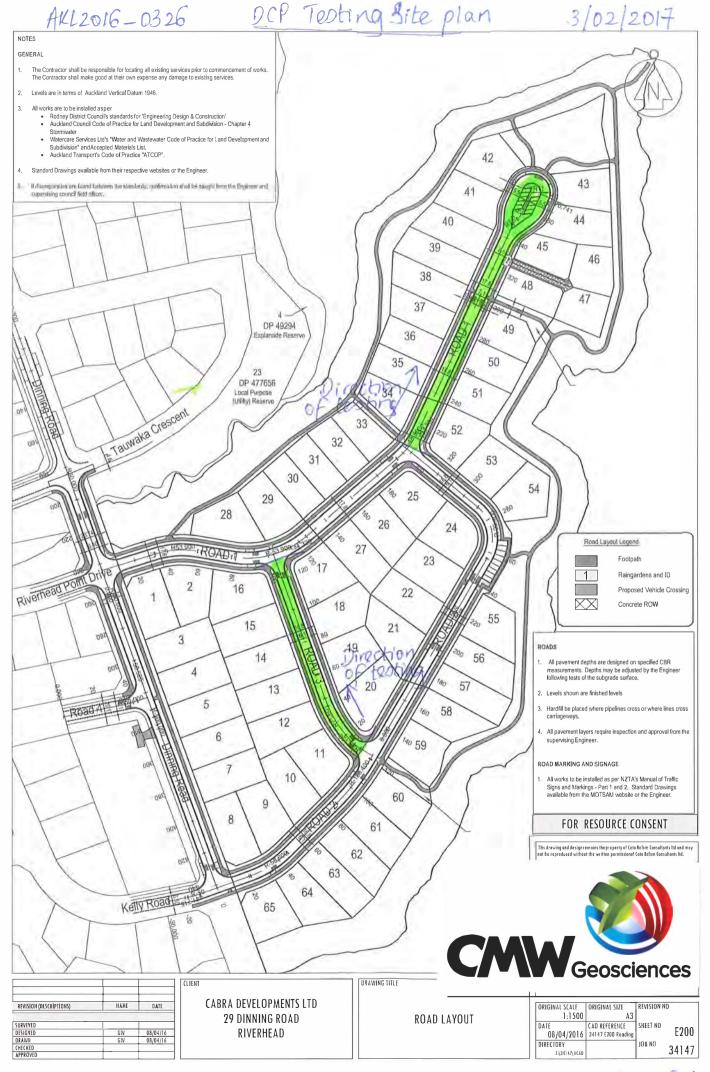
*Equivalent CBR values calculated using AUSTROADS (2010) Guide to Pavernent Technology Part 2, Figure 5.3, For Fine Grained Cohesive Soils, and are relevant to fine grained cohesive soils only.

Page 3 of 4

Equivalent CBR Values are not accredited and are outside the scope of the laboratory's accreditation

Test No.		21		22	3	23		24		25
Test Location	Ro	ad 1	Ro	ad 1	Ro	ad 1	Ro	ad 1	Ro	ad 1
Chainage & Offset	CH25	00 Left	СНЗО	0 Right	CH31	.0 Left	CH32	0 Right	СНВ	IO Left
Material & Layer:	CI	AY	C	LAY	CI	AY	c	AY	CI	.AY
Depth (mm)	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR
0 - 100	7	15	6	13	6	13	2	4	3	6
100 - 200	7	15	7	15	5	10	6	13	2	4
200 - 300	6	13	5	10	6	13	5	10	1	2
300 - 400	3	6	8	18	4	8	5	10	1	2
400 - 500	3	6	7	15	4	8	2	4	2	4
500 - 600	2	4	3	6	3	6	3	6	2	4
600 - 700	1	2	3	6	2	4	3	6	2	4
700 - 800	1	2	3	6	3	6	3	6	1	2
800 - 900	2	4	2	4	3	6	2	4	2	4
900 - 1000	2	4	2	4	2	4	2	4	2	4
Test No.	2	16	2	27						
Fest Location	Ros	ad 1	Ros	ad 1						
Chainage & Offset	CH340	O Right	CH36	0 Right						
Material & Layer:	CL	AY	CL	AY						
Depth	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*
0 - 100	5	10	4	8						
100 - 200	2	4	4	8						
200 - 300	3	6	4	8						
300 - 400	2	4	2	4						
400 - 500	2	4	3	6						
500 - 600	2	4	2	4						
600 - 700	2	4	2	4						
700 - 800	2	4	2	4				1 7		
	and the second s									
800 - 900	1	2	2	4						

7/02/2017


7/02/2017

7/2/207

Date:

Date:

Date:

Report No:

AKL2016_0326LAH Rev.D

Project Name:

29 Dinning Road

Project Location:

Riverhead

Project Number:

AKL2016_0326

Test Date:

15/03/2017

Tested By:

Client:

Cabra Developments Limited

Client Address:

Client Reference:

Auckland Laboratory

CMW Geosciences (NZ) Limited

Building C, 9 Piermark Drive, Rosedale, NZ 0632 PO Box 300206, Albany, Auckland, NZ 0752

Phone: +64 (09) 4144 632

Testing Locations Selected By:

CMW Field Staff

Tests indicated as not accredited are outside the scope of the laboratory's accreditation

Equivalent CBR Values are not accredited and are outside the scope of the laboratory's accreditation

Test No.		1		2		3		4		5
Test Location	Ro	ad 2	Ros	ad 2	Roa	ad 2	Ro	ad 2	Ro	ad 2
Chainage & Offset	CH24	0 Right	CH24	5 Left	CH250	O Right	CH25	55 Left	CH26	D Right
Material & Layer;	CLAY / S	Subgrade	CLAY / S	Subgrade	CLAY / S	Subgrade	CLAY /	Subgrade	CLAY / S	Subgrade
Depth (mm)	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*
0 - 100	10	20+	4	8	6	13	4	В	2	4
100 - 200	5	10	3	6	5	10	2	4	2	4
200 - 300	11	20+	2	4	4	8	2	4	3	6
300 - 400	14	20+	3	6	2	4	2	4	3	6
400 - 500	8	18	2	4	2	4	2	4	2	4
500 - 600	8	18	4	8	4	8	2	4	3	6
600 - 700	8	18	6	13	2	4	3	6	3	6
700 - 800	8	18	4	8	3	6	3	6	3	6
800 - 900	8	18	4	8	3	6	3	6	4	8
900 - 1000										
Test No.		6		7		8		9	1	.0
Test Location	Ro	Road 2		Road 2		ad 2	Ro	ad 2	Ro	ad 2
Chainage & Offset	CH26	is Left	CH270 Right		CH27	5 Left	CH28	0 Right	CH32	O Left
Material & Layer:	CLAY / S	Subgrade	CLAY / Subgrade		CLAY / S	ubgrade	CLAY / S	Subgrade	CLAY / Subgrade	
Depth	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*
0 - 100	2	4	5	10	4	8	7	15	6	13
100 - 200	3	6	3	6	2	4	3	6	4	8
200 - 300	5	10	2	4	3	6	4	8	3	6
300 - 400	3	6	4	8	3	6	4	8	2	4
400 - 500	2	4	3	6	3	6	3.	6	4	8
500 - 600	3	6	3	6	3	6	2	4	2	4
600 - 700	4	8	4	8	2	4	2	4	3	6
700 - 800	2	4	2	4	2	4	2	4	2	4
800 - 900	2	.4	2	4	2	4	2	4	4	8
900 - 1000										1 = 1

Prepared by:

Authorised Signatory:

Checked by:

TG CS Date:

16/03/2017

Date: Date:

16/03/2017 16/3/2017 This report should only be reproduced in full

*Equivalent CBR values calculated using AUSTROADS (2010) Guide to Pavement Technology Part 2, Figure 5.3, For Fine Grained Cohesive Soils, and are relevant to fine grained cohesive soils only.

Page 1 of 3

Auckland Laboratory CMW Geosciences (NZ) Limited

Report No:

AKL2016_0326LAH Rev.0

Project Name:

29 Dinning Road

Project Location:

Riverhead

Project Number:

AKL2016_0326

Test Date:

15/03/2017

Tested By:

Client:

Client Address:

Cabra Developments Limited

Testing Locations Selected By:

Phone: +64 (09) 4144 632

Building C, 9 Piermark Drive, Rosedale, NZ 0632 PO Box 300206, Albany, Auckland, NZ 0752

CMW Field Staff

Fests indicated as not accredited are outside the scope of the laboratory's accreditation

Equivalent CBR Values are not accredited and are outside the scope of the Jaboratory's accreditation

Client Reference:

antigers (transmission)										
Test No.	1	1	1	2	1	3	1	4	1	5
Test Location	Roa	rd 2	Roa	rd 2	Roa	id 1	Roa	nd 1	Ros	id i
Chainage & Offset	CH330	Right	CH34	0 Left	CH180) Right	CH18	5 Left	CH190	Right
Material & Layer:	CLAY / S	ubgrade	CLAY / S	ubgrade	CLAY/S	ubgrade	CLAY / S	ubgrade	CLAY / S	ubgrade
Depth (mm)	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*
0 - 100	6	13	6	13	6	13	5	10	4	8
100 - 200	4	8	4	8	S	10	7	15	4	8
200 - 300	2	4	2	4	3	6	4	8	4	8
300 - 400	2	4	3	6	4	8	7	15	4	8
400 - 500	2	4	3	6	3	6	4	8	2	4
500 - 600	2	4	2	4	4	8	3	6	2	4
600 - 700	2	4	2	4	4	8	3	6	2	4
700 - 800	4	8	2	4	4	8	3	6	2	4
800 - 900	4	8	2	4	Á.	8	2	4	2	4
900 - 1000										
Test No.	1	.6	1	7	1	8		9	7	0
Test Location	Ros	ad 1	Road 1		Ros	ad 1	Ros	id 1	Ro	ad 1
Chainage & Offset	CH19	5 Left	CH200 Right		CH20	5 Left	CH21	O Right	CH22	0 Left
Material & Layer:	CLAY / S	Subgrade	CLAY / Subgrade							
Depth	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR
0 - 100	6	13	5	10	4	8	6	13	4	8
100 - 200	8	18	3	6	3	6	6	13	4	8
200 - 300	4	8	2	4	2	4	5	10	3	6
300 - 400	5	10	3	6	4	8	3	6	2	4
400 - 500	5	10	2	4	2	4	2	4	3	6
500 - 600	5	10	2	4	2	4	3	6	2	4
600 - 700	5	10	3	6	2	4	2	4	3	6
700 - 800	5	io	3	6	2	4	2	4	2	4
800 - 900	4	8	4	8	2	4	2	4	2	4
									1	

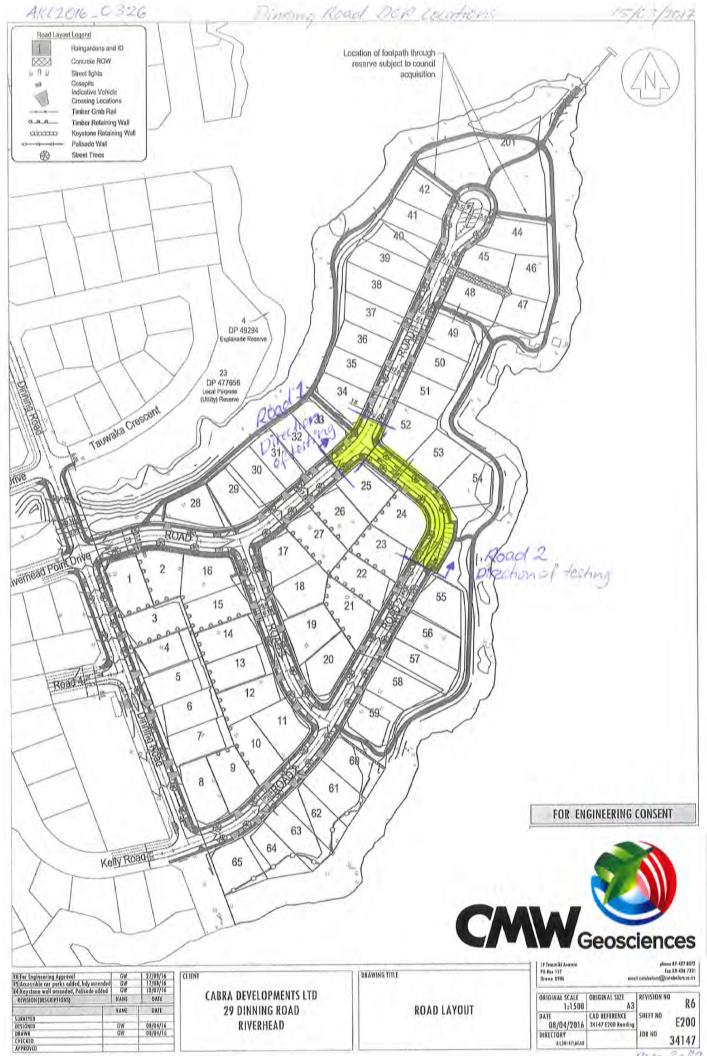
Prepared by: Checked by:

TG CS

Date:

16/03/2017

Date:


16/03/2017

*Equivalent CBR values calculated using AUSTROADS (2010) Guide to Pavement Technology Part 2, Figure 5.3, For Fine Grained Cohesive Soils, and are relevant to fine grained cohesive soils only.

Page 2 of 3

Authorised Signatory:

16/3/2017

