

23 February 2018

STAGE 4 OF KAURI GROVE SUBDIVISION GEOTECHNICAL COMPLETION REPORT

Cabra Developments Limited

Ref: AKL2016_0046AF Rev: 0

Table of Contents

1.	INT	INTRODUCTION		1
2.	PRO	OJEC.	T BACKGROUND	1
3.	DES	SCRIF	PTION OF EARTHWORKS	1
4.	GE	OTEC	HNICAL QUALITY CONTROL	1
	4.1.	Site	Observations	1
	4.2.	Con	npaction Control	2
5.	EVA	\LUA	FION OF COMPLETED EARTHWORKS	2
	5.1.	Natı	ıral Hazards	2
	5.1.	1.	Flood Plain Consent Notice Zone	2
	5.1.2.		Specific Design Zone Consent Notice Zone – Uncontrolled Filling	2
	5.1.	3.	Drainage Consent Notice Zone	3
	5.2.	Fill I	nduced Settlement	3
	5.3.	Serv	rice Line Trenches	3
	5.4.	Roa	d Subgrades	3
	5.5.	Des	ign of Shallow Foundations	3
	5.5.	1.	Bearing Capacity	3
	5.5.2. 5.5.3.		Foundation Settlements	4
			Soil Expansiveness Classification	4
	5.6.	Тор	soil Depths	4
6.	CLC	SUR	E	4

Appendices

Appendix A – Statement of Professional Opinion as to the Suitability of Land For Building Development

Appendix B – Drawings

Appendix C - Laboratory Test Data

Appendix D – Field Test Data

1. INTRODUCTION

In accordance with our instructions, this Geotechnical Completion Report has been prepared for Cabra Developments Limited as part of the documentation to be submitted to Auckland Council following earthworks to form stage 4 of the Kauri Grove Subdivision development. Construction of this residential subdivision has been undertaken in accordance with the Auckland Council Resource Consent number SLC65429 and REG65430 and Engineering Approval letter dated 12 January 2016.

This report contains our Suitability Statement, specific comments related to items raised in the Resource Consent, relevant test data and the Aspire Consulting Engineers Limited as-built plan set as provided in Appendix B.

This report covers the construction period December 2015 to February 2018 and is intended to be used for certification purposes for new lots (listed below) created from Lot 88 DP 502754 as follows:

- 44 new residential lots numbered 1 to 7, 9 to 39 and 50 to 55 inclusive;
- 1 new road named Vogwill Road
- Extension of 2 existing roads, named Len Ireland Drive and Fruitlands Road

This stage of the Kauri Grove Development is located off Len Ireland Drive and Fruitlands Road, Huapai. As can be seen from the as-built plans, 31 of the lots have been affected by filling as part of the earthworks operations to a maximum depth of approximately 3.6 metres.

2. PROJECT BACKGROUND

The geotechnical investigations and design were undertaken by as presented in the following reports:

- Geotechnical Investigation Report for the Proposed Residential Subdivision at 202, 218 and 224 Matua Road, Huapai. Referenced AKL2016_0046AA Rev. 1, dated 29 July 2015;
- Section 92 Response, 202, 218, and 224 Matua Road, Huapai. Referenced AKL2016_0046AB Rev. 0, dated 28 October 2015.

3. DESCRIPTION OF EARTHWORKS

The majority of earthworks occurred as part of the bulk earthworks undertaken across Kauri Grove subdivision during the 2015-2016 earthworks season. This includes site stripping, gully muck-outs and subsoil drainage installation, soft soil undercuts and general cut to fill earthworks across the subdivision.

Some minor civil works also occurred within this stage during the 2015-2016 season, including road undercuts and stabilisation of subgrade areas. The majority of lots were also stabilised and retopsoiled following the end of the season.

Civil works including service line drainage, roading and footpath construction and respread of topsoil across all works was undertaken during 2017 and early 2018. In addition, minor earthworks to extend the building platform areas on Lots 50 to 52 were undertaken during late 2017 which included stripping of topsoil, conditioning and placement of engineered fills and respread of topsoil within these lots.

4. GEOTECHNICAL QUALITY CONTROL

4.1. Site Observations

During the earthworks site visits were typically undertaken several times each week to assess compliance with NZS 4431 and specific design recommendations and specifications.

Site visits were carried out to observe and confirm compliance relating to:

- Adequate topsoil stripping;
- Fill areas prior to the placement of fill materials to ascertain that all mullock and soft inorganic subsoils had been removed;
- Excavation and backfilling of sewer and stormwater trenches; and,
- Placement and compaction of engineered fills.

4.2. Compaction Control

Compaction of engineered earth fills was controlled by undrained shear strength measured by hand held shear vane calibrated using the NZGS 2001 method and by air voids as defined by NZS4402.

The criteria for undrained shear strength were a minimum single value of 110 kPa and minimum average of any 10 consecutive tests of 140 kPa.

The criteria for air voids were a maximum single value of 12% and maximum average of any 10 consecutive tests of 10%.

Vane shear strength, water content and in situ density tests were carried out on all areas of the engineered filling to at least the frequency recommended by NZS 4431.

These tests showed on some occasions that the required compaction standards were not being achieved and to the best of our knowledge the failing areas of fill were re-worked as necessary. Subsequent testing confirmed compliance with the specification.

5. EVALUATION OF COMPLETED EARTHWORKS

5.1. Natural Hazards

The appended Aspire Consulting Engineers As-built Consent Notice Plans referenced 1285-AB(STG-2)-PG103 and PG104 depict the extents of a series of zones that contain limitations intended to ensure that future building and/ or earthworks on the lots is undertaken in a manner that does not lead to buildings being subject to any of the natural hazards described in section 106 of the Resource Management Act, i.e. erosion, falling debris, subsidence, slippage, and inundation. Consideration of the inundation hazard was outside the scope of CMW's brief and has been assessed by others. The applied zones include:

5.1.1. Flood Plain Consent Notice Zone

Lots 50, 51, 52, and 55 are situated partially within flood plains from the adjacent Kumeu River. We understand that the flood plain zone with these lots is at an RL of 16.7 metres (including allowance for climate change). No building development and/or future earthworks should be taken within these areas.

5.1.2. Specific Design Zone Consent Notice Zone – Uncontrolled Filling

Lots 50 to 55 contain areas outside of the building platforms that include uncontrolled/uncertified filling. The filling within this area comprises topsoil and some organic soils placed as part of the landscaping works within the northern portions of these lots where marked on the appended Asbuilt Consent Notice Plan 2, referenced 1285-AB(STG-2)-PG104 as Specific Investigation and Design Consent Notice Zone.

5.1.3. Drainage Consent Notice Zone

The zone has been placed on lots where service lines have been constructed within or in close proximity to the lot. It is intended to protect the public services from inappropriate loading from future development. Further recommendations for service trenches are provided in Section 5.3 below.

Full descriptions of the restrictions associated with each of these zones are presented in the Suitability Statement (Appendix A). Additional information is also provided in some of the following sections.

5.2. Fill Induced Settlement

On the basis of the relatively minor magnitude of fill depths on this site, together with the elapsed time since it was placed, we consider that remaining post-construction settlements will be within code limits.

5.3. Service Line Trenches

As part of the civil works, sanitary sewer and stormwater services were trenched throughout the development as shown on the appended Aspire Consulting Engineers Limited Stormwater and Sanitary Sewer As-built Plans.

Stormwater and sanitary sewer trenches in key locations contain a punched draincoil to facilitate draining of any groundwater seepages within the trench bedding. These draincoils are connected to the downstream stormwater manhole to outlet and water. This drainage has been installed as a precautionary measure that is not considered to be necessary for private connections.

As is normal on all subdivisions, building developments involving foundations within a 45 degree zone of influence from pipe inverts will require engineering input. The Auckland Council drawing referenced SW22 provided in Appendix B extracted from Chapter 4 of the Auckland Council Code of Practice for Land development and Subdivision depicts their requirements for stormwater pipes. Details for water and wastewater pipes are available in the Watercare COP1 - General Requirements and Procedures. The majority of lots are known to have service trenches within the lots as shown on the appended stormwater as-built plans. The resulting restrictions are presented in the Suitability Statement below.

5.4. Road Subgrades

Penetration resistance testing was carried out on the road subgrades during construction and the results of this testing were forwarded to Aspire Consulting Engineers Limited for pavement remedial design. Where soft ground with low equivalent CBR values was identified it was generally undercut and backfilled with stabilised fill and/or increased metal depths. All road subgrade areas were subsequently lime/ cement stabilised to achieve appropriate CBR values.

Benkelman Beam testing of the base course was carried out by Road Test Limited on each road and those results were also forwarded to Aspire Consulting Engineers Limited.

5.5. Design of Shallow Foundations

5.5.1. Bearing Capacity

Once bulk earthworks and top-soiling of the building platforms had been completed, our staff drilled hand auger boreholes on platforms in natural ground to determine representative finished ground conditions and hence evaluate likely foundation options for future building development. Our assessments of bearing capacity for the design of shallow foundations on each building platform are contained in the appended Suitability Statement.

At current subgrade levels all lots have been assessed as having a geotechnical ultimate bearing capacity of 300 kPa within the influence of conventional shallow residential building foundation loads.

If higher geotechnical ultimate bearing capacities are required, further specific site investigation and design of foundations should be carried out prior to Building Consent application.

5.5.2. Foundation Settlements

At the bearing pressures specified above and subject to the design requirements for soil expansiveness provided below, differential settlement of shallow foundations for buildings designed in accordance with NZS 3604 (including the 600mm subfloor fill depth limit) should be within code limits.

5.5.3. Soil Expansiveness Classification

8 sets of soil tests were carried out on samples taken from likely foundation level on lots within this stage of the development.

Testing was carried out in accordance with NZS 4402, "Methods of Testing Soils for Civil Engineering Purposes" test 2.2 and 2.6 and were used in conjunction with visual-tactile assessment of the site soils to determine expansive site Classes as defined in AS 2870, "Residential Slabs and Footings – Construction". All test results are appended.

On this basis we have assessed the AS 2870 Site Class for all lots within this stage of the development to be either M (moderate) or H1 (high). Details of foundation options for these Classes are contained in the appended Suitability Statement.

In recent years in Auckland, there have been examples of concrete floors and/ or foundations that have been poured on dry, desiccated subgrades in summer months on expansive soils and have undergone heaving and cracking once the soil moisture contents have returned to higher levels. Foundation contractors need to be made aware of this issue and the need to maintain appropriate moisture contents in the footings and building platform subgrade between the time of excavation and the pouring of concrete.

Remedial actions that may be appropriate include platform protection with a hard fill layer, pouring of a blinding layer of concrete in footing bases and soaking of the building platform with sprinklers for an extended period.

Home owners need to be aware that the planting of high water demand plants where their roots may extend close to footings can also cause settlement damage.

5.6. Topsoil Depths

Topsoil depths have been checked by the drilling of a borehole in the approximate centre of the building platform on each lot. The results are considered indicative for each lot, but may be subject to variations. Topsoil depths are between 50 and 300mm on this stage of the development.

Site specific findings are contained in the appended Suitability Statement Summary (Appendix A). However, it is possible that further levelling works have been undertaken since our investigations and accordingly, we strongly recommend that lot purchasers complete their own checks of topsoil depths.

6. CLOSURE

The appended Statement of Professional Opinion is provided to the Auckland Council and Cabra Developments Limited for their purposes alone on the express condition that it will not be relied upon by any other person. It is important that prospective purchasers satisfy themselves as to any specific conditions pertaining to their particular land interest.

Although regular site visits have been undertaken for observation, for providing guidance and instruction and for testing purposes, the geotechnical services scope did not include full time site presence. To this end, our appended Suitability Statement also relies on the Contractors' work practices and assumes that when we have not been present to observe the work, it has been completed to high standards and in accordance with the drawings, instructions and consent conditions provided to them.

Similarly it assumes that all as-built information and other details provided to the Client and/or CMW by other members of the project team are accurate and correct in all respects.

For and on behalf of CMW Geosciences

Prepared by:

Greg Snook

Senior Engineering Geologist

Reviewed and Approved by:

Richard Knowles

Principal Geotechnical Engineer, CPEng

Appendix A

Statement of Professional Opinion as to the Suitability of Land for Building Development

STATEMENT OF PROFESSIONAL OPINION AS TO THE SUITABILITY OF LAND FOR BUILDING DEVELOPMENT

- I, R.J Knowles, of CMW Geosciences (NZ) Limited Partnership, Auckland, hereby confirm that:
- 1. As a Chartered Professional Engineer experienced in the field of geotechnical engineering, I am a Geo-professional as defined in section 1.2.2 of NZS 4404 and was retained by the Developer as the Geotechnical Engineer on Stage 4 of the Kauri Grove Residential Development.
- 2. The extent of preliminary investigations carried out to date are described in the CMW Geotechnical Investigation Report referenced AKL2016_0046AA Rev. 1, dated 29 July 2015. The conclusions and recommendations of those documents have been re-evaluated in the preparation of this report. The results of all tests carried out are also appended.
- 3. In my professional opinion, not to be construed as a guarantee, I consider that:
 - (a) Apart from the area of uncertified filling on Lot 50 to 55, the earth fills shown on the appended As-built Cut to Fill Depth Contour Plan and As-built Undercut Depth Contour Plan have been placed in compliance with NZS 4431, the legacy Rodney District Council Plans, Auckland Council Code of Practice for Land Development and Subdivision and related documents.
 - **Specific Design Consent Notice Zone Uncontrolled Filling** areas on lots 50 to 55 inclusive are depicted on the appended As-built Consent Notice Plan 2, referenced 1285-AB(STG-2)-PG104. The uncontrolled/uncertified filling was not placed or compacted to engineering standards. Any building development within this area will require specific investigation and foundation design prior to building Consent application.
 - (b) Flood Plain Consent Notice Zone areas, determined as areas at finished levels lower than RL16.7m on lots 50, 51, 52, and 55 are designated no-build zones due to flooding risk. No building construction and no earthworks may take place in these areas.
 - (c) Drainage Consent Notice Zone areas on lots 1, 2, 1 to 16, 25 to 39, 50, 51, 53 and 54 inclusive are depicted on the appended As-built Consent Notice Plan 1 referenced 1285-AB(STG-2)-PG103 based on a 45 degree zone of influence from service lines. No building development should take place within the 45 degree zone of influence of drain inverts unless endorsed by specific design and by construction inspections undertaken by a Chartered Professional Engineer experienced in geomechanics to ensure that lateral stability and differential settlement issues are addressed and that building loads are transferred beyond the influence of the pipe and trench backfill. A copy of drawing SW22 extracted from Chapter 4 of the Auckland Council Code of Practice for Land development and Subdivision this document is provided in Appendix B for clarification. Details for water and wastewater pipes are available in the Watercare COP1 General Requirements and Procedures.

- (d) A geotechnical ultimate bearing capacity of 300 kPa may be assumed for shallow foundation design on the building platforms for all lots.
 - If for any reason higher geotechnical bearing capacities are required, further specific site investigation and design of foundations should be carried out prior to Building Consent application.
- (e) The expansive site Class for lots 1 to 7, 9 to 18, 31 to 39 and 52 to 55 inclusive have been assessed as AS2870 Class H1 (High). The expansive site Class for lots 19 to 30 and 50 to 51 inclusive have been assessed as AS2870 Class M (Moderate). We recommend that building designers note on the Building Consent drawings the need to maintain appropriate moisture levels across building subgrades and in footing excavations (as described in Section 5.5.3 of the Geotechnical Completion Report) for reference by foundation contractors.
- (f) Subject to the geotechnical limitations, restrictions and recommendations contained in clauses 3(a), 3(b), 3(c), 3(d), and 3(e) above:
 - (i) The filled and natural ground is generally suitable for residential buildings constructed in accordance with NZS 3604 and the requirements of AS2870 for the appropriate expansive soil class.
 - (ii) Where shallow foundations are appropriate, design may be carried out in accordance with AS 2870 for the appropriate expansive soil class or alternately, a specific foundation and structural design may be undertaken by a Chartered Professional Engineer.
- 4. Road subgrades have been formed with appropriate regard for slope stability and settlement risks.

The following table summarises the conditions on each of each residential lots.

For and on behalf of CMW Geosciences

Richard Knowles

Principal Geotechnical Engineer, CPEng

GCR Summary Table

Condition	Specific Design Consent Notice Zone – Uncontrolled Filling	Flood Plain Consent Notice Zone	Drainage Consent Notice Zone	Geotechnical Ultimate Bearing Capacity (kPa)	AS2870 Expansive Class	Indicative Topsoil Depth (mm)
GCR SOPO Clause	3(a)	3(b)	3(c)	3(d)	3(e)	
Lot number						
1			•	300	H1	200
2			•	300	H1	200
3				300	H1	300
4				300	H1	300
5				300	H1	300
6				300	H1	100
7				300	H1	100
9				300	H1	100
10				300	H1	250
11				300	H1	200
12				300	H1	300
13				300	H1	300
14			•	300	H1	200
15			•	300	H1	300
16			•	300	H1	300
17				300	H1	200
18				300	H1	300
19				300	М	200
20				300	М	300

	200
22 300 M	-
	300
23 300 M 3	300
24 300 M 2	200
25 ● 300 M 2	200
26 ● 300 M :	200
27 ● 300 M 2	200
28 ● 300 M 2	200
29 ■ 300 M 2	200
30 ● 300 M 2	200
31 ● 300 H1 :	300
32 ● 300 H1 2	200
33 ● 300 H1 2	200
34 ● 300 H1 2	200
35 ● 300 H1 2	200
36 ● 300 H1 2	200
37 ● 300 H1 3	300
38 ● 300 H1 2	250
39 ● 300 H1 2	200
50 • • 300 M	200
51 ● ● 300 M	150
52 ● 300 H1	100
53 ● 300 H1 2	200
54 • 300 H1 2	200
55 • • 300 H1	250

Appendix B

Drawings

Title	Reference No.	Date	Revision
Cover Sheet and Contents Page	1285 - PG101	FEB 2018	-
Existing Contours Plan	1285 - PG102	FEB 2018	-
As Built Consent Notice Plans	1285 - PG103 and PG104	FEB 2018	-
As Built Coordinate Tables	1285 - PG105	FEB 2018	-
As Built Contour Plan	1285 – EW201	FEB 2018	-
As Built Cut to Fill Depth Contour Plan	1285 – EW202	FEB 2018	-
As Built Undercut Depth Contour Plan	1285 – EW203	FEB 2018	-
As Built Road Index Plan	1285 – RD301	FEB 2018	-
As Built Roading Plan 1	1285 – RD302	FEB 2018	-
As Built Roading Plan 2	1285 – RD303	FEB 2018	-
As Built Road Cross Sections	1285 – RD304	FEB 2018	-
As Built Subgrade Undercuts Plan	1285 – RD305	FEB 2018	-
As Built Stormwater Plan 1	1285 – SW401	FEB 2018	-
As Built Stormwater Manhole Plan 1	1285 – SW402	FEB 2018	-
As Built Stormwater Plan 2	1285 – SW403	FEB 2018	-
As Built Stormwater Manhole Plan 2	1285 – SW404	FEB 2018	-
As Built Stormwater Plan 3	1285 – SW405	FEB 2018	-
As Built Wastewater Plan 1	1285 – WW501	FEB 2018	-

23 February 2	201	18
---------------	-----	----

As Built Wastewater Plan 2	1285 – WW502	FEB 2018	-
As Built Water Supply Plan 1	1285 – WS601	FEB 2018	-
As Built Water Supply Plan 2	1285 – WS602	FEB 2018	-
Auckland Council SW22 Plan			
Watercare Drainage Extracts			

CABRA DEVELOPMENTS LIMITED AS BUILT PLANS 44 LOT RESIDENTIAL SUBDIVISION (STAGE 2) LEN IRELAND DRIVE, HUAPAI SUB 60067200 ENG60069259

PRELIMINARY & GENERAL

PG101 COVER SHEET & CONTENTS PAGE

PG102 EXISTING CONTOUR PLAN

PG103-104 AS BUILT CONSENT NOTICE PLANS

PG105 AS BUILT COORDINATE TABLES

EARTHWORKS

EW201 AS BUILT CONTOUR PLAN

EW202 AS BUILT CUT TO FILL DEPTH CONTOUR PLAN

EW203 AS BUILT UNDERCUT DEPTH CONTOUR PLAN

ROADING

RD301 AS BUILT ROAD INDEX PLAN

RD302 AS BUILT ROADING PLAN 1

RD303 AS BUILT ROADING PLAN 2

RD304 AS BUILT ROAD CROSS SECTIONS

RD305 AS BUILT SUBGRADE UNDERCUT PLAN

STORMWATER

SW401 AS BUILT STORMWATER PLAN 1

SW402 AS BUILT STORMWATER MANHOLE PLAN 1

SW403 AS BUILT STORMWATER PLAN 2

SW404 AS BUILT STORMWATER MANHOLE PLAN 2

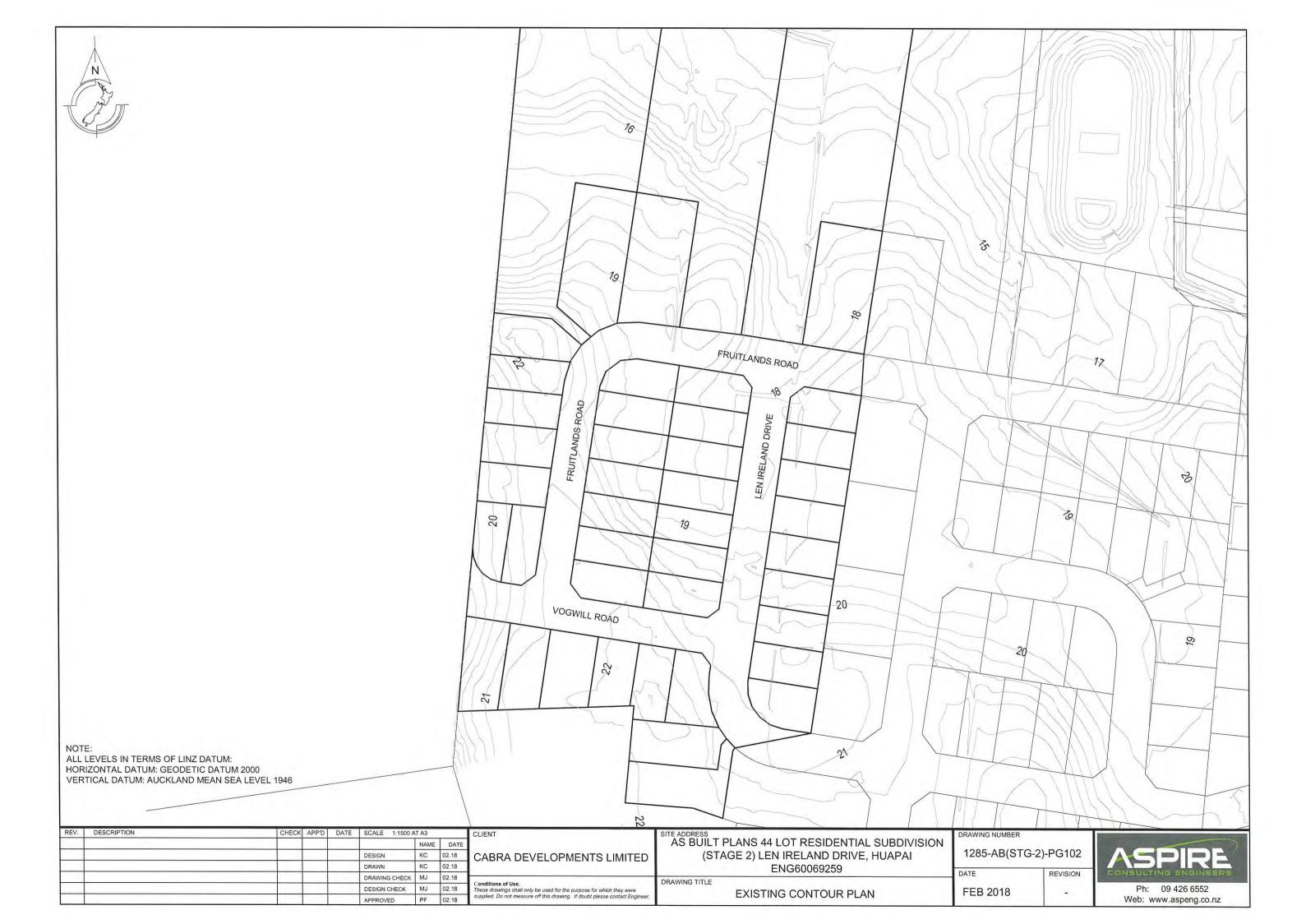
SW405 AS BUILT STORMWATER PLAN 3

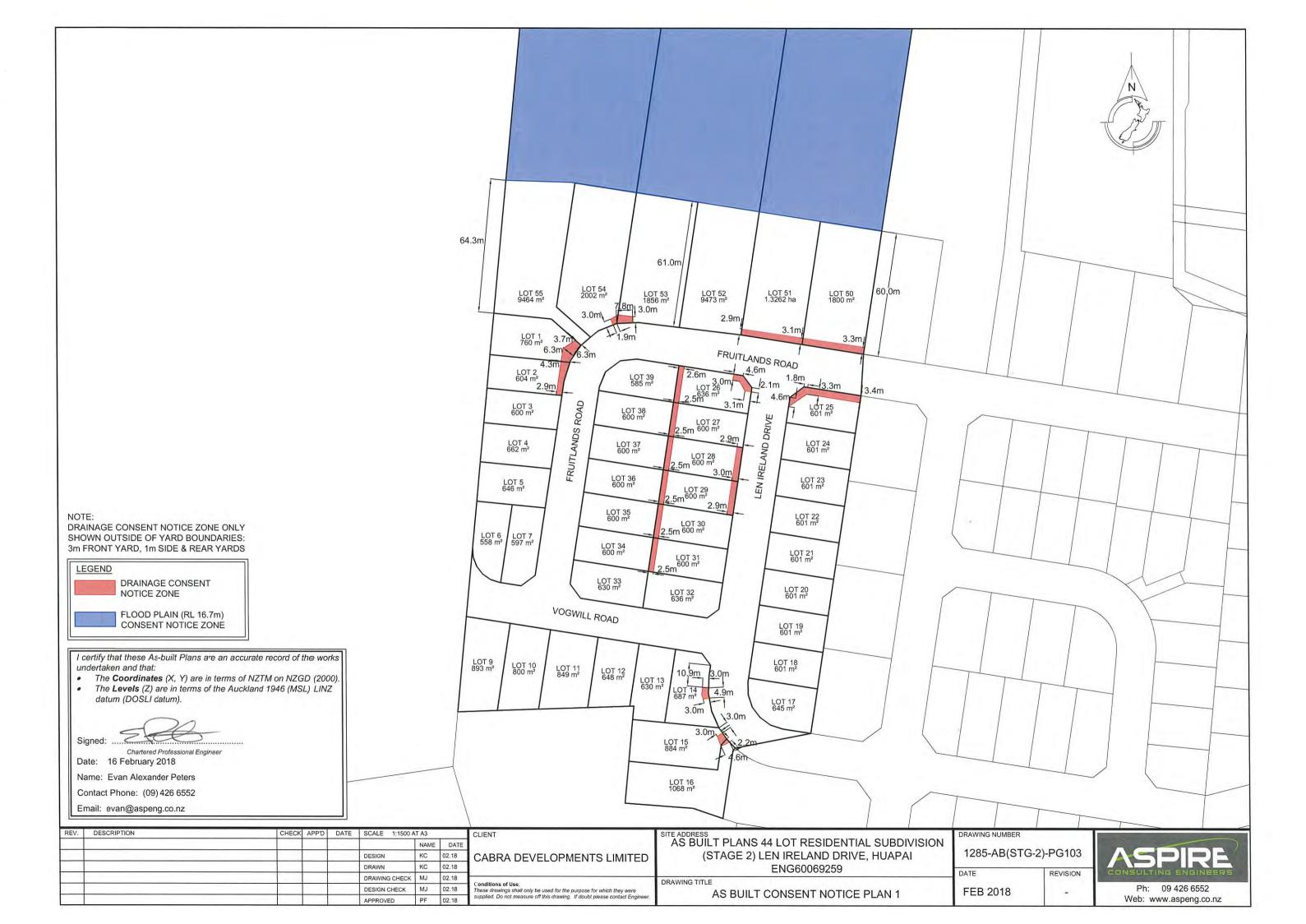
COVER SHEET PG101

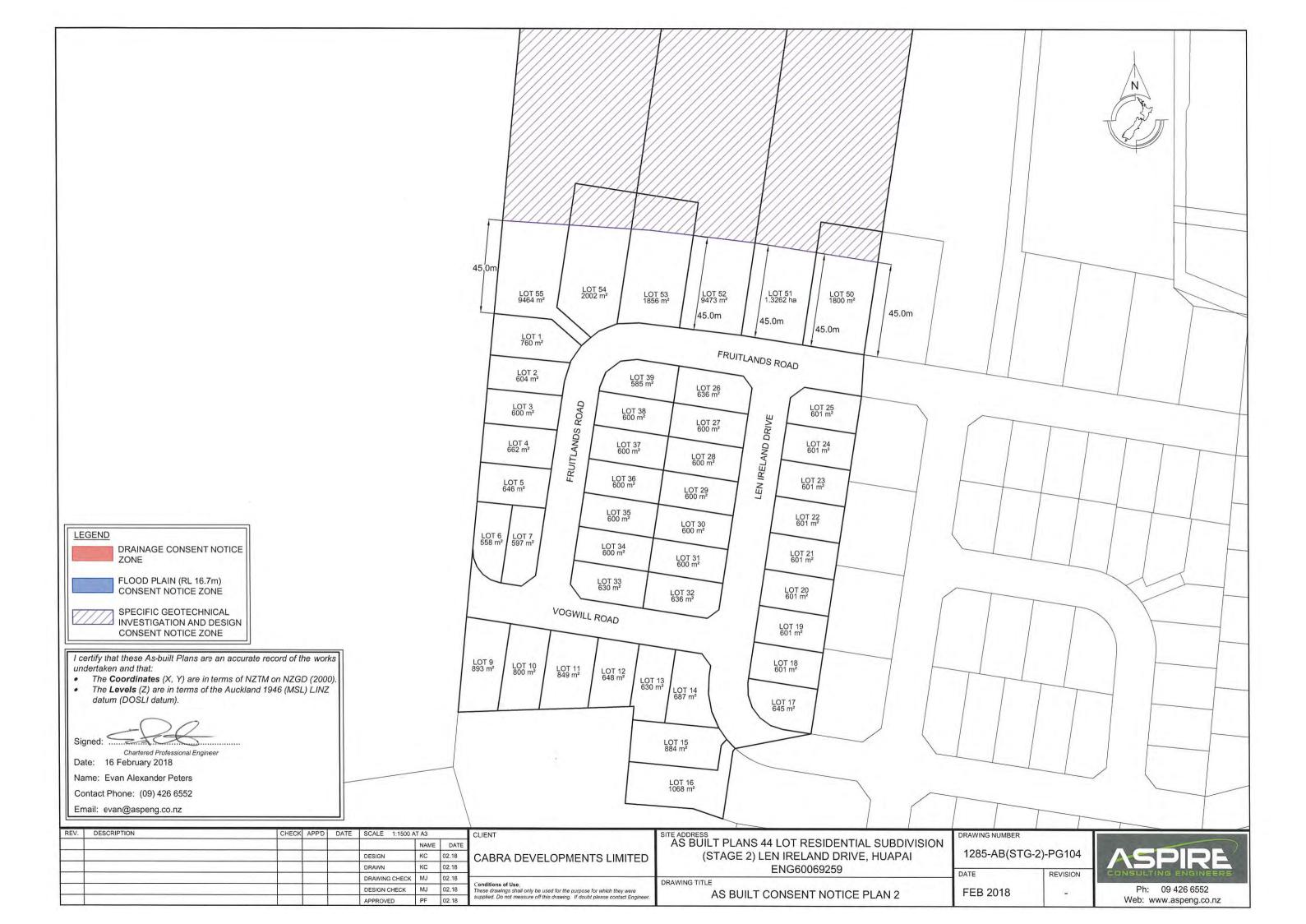
WASTEWATER

WW501 AS BUILT WASTEWATER PLAN 1

WW502 AS BUILT WASTEWATER PLAN 2


WATER SUPPLY


WS601 AS BUILT WATER SUPPLY PLAN 1


WS602 AS BUILT WATER SUPPLY PLAN 2

JOB NUMBER: 1285

AS BUILT CO-ORDINATE TABLES

STORMWATER CESSPIT

COORDINATES					
POINTS	EASTING	NORTHING			
AB-SWCP01	1736598.484	5930576.567			
AB-SWCP02	1736584.605	5930589.535			
AB-SWCP03	1736526.352	5930596.036			
AB-SWCP04	1736605.100	5930568.827			
AB-SWCP05	1736528.759	5930589.879			
AB-SWCP06	1736595.204	5930512.487			
AB-SWCP07	1736588.602	5930513.157			
AB-SWCP08	1736505.042	5930520.194			
AB-SWCP09	1736498.389	5930521.236			
AB-SWCP10	1736571.794	5930447.607			
AB-SWCP11	1736566.596	5930455.537			
AB-SWCP12	1736581.616	5930434.507			

STORMWATER MANHOLE

C	COORDINAT	ES
POINTS	EASTING	NORTHING
AB-SWMH-A01	1736535.772	5930447.171
AB-SWMH-A02	1736495.616	5930454.211
AB-SWMH-B03	1736589.157	5930596.562
AB-SWMH-B04	1736527.272	5930604.906
AB-SWMH-B05	1736503.405	5930589.850
AB-SWMH-B06	1736492.066	5930524.930
AB-SWMH-B07	1736484.289	5930479.820
AB-SWMH-B08	1736471.491	5930458.094
AB-SWMH-C03	1736618.370	5930569.513
AB-SWMH-C04	1736611.748	5930564.991
AB-SWMH-C05	1736582.078	5930518.842
AB-SWMH-C06	1736572.833	5930464.401
AB-SWMH-C07	1736569.677	5930446.822
AB-SWMH-C08	1736567.842	5930436.100
AB-SWMH-D01	1736565.714	5930423.205
AB-SWMH-D02	1736574.177	5930398.082
AB-SWMH-E01	1736591.258	5930568.913
AB-SWMH-E02	1736587.581	5930575.537
AB-SWMH-E03	1736558.107	5930580.767
AB-SWMH-E04	1736540.912	5930481.585

WASTEWATER FLUSHING PIT

(COORDINATES				
POINTS	EASTING	NORTHING			
AB-WWFP01	1736596.710	5930592.192			
AB-WWFP02	1736592.204	5930560.596			
AB-WWFP03	1736460.210	5930463.690			

WATER SUPPLY FIRE HYDRANT

COORDINATES					
POINTS	EASTING	NORTHING			
AB-WSFH01	1736587.782	5930594.714			
AB-WSFH02	1736499.664	5930556.241			
AB-WSFH03	1736479.365	5930476.056			
AB-WSFH04	1736561.512	5930445.060			
AB-WSFH05	1736585.025	5930522.026			

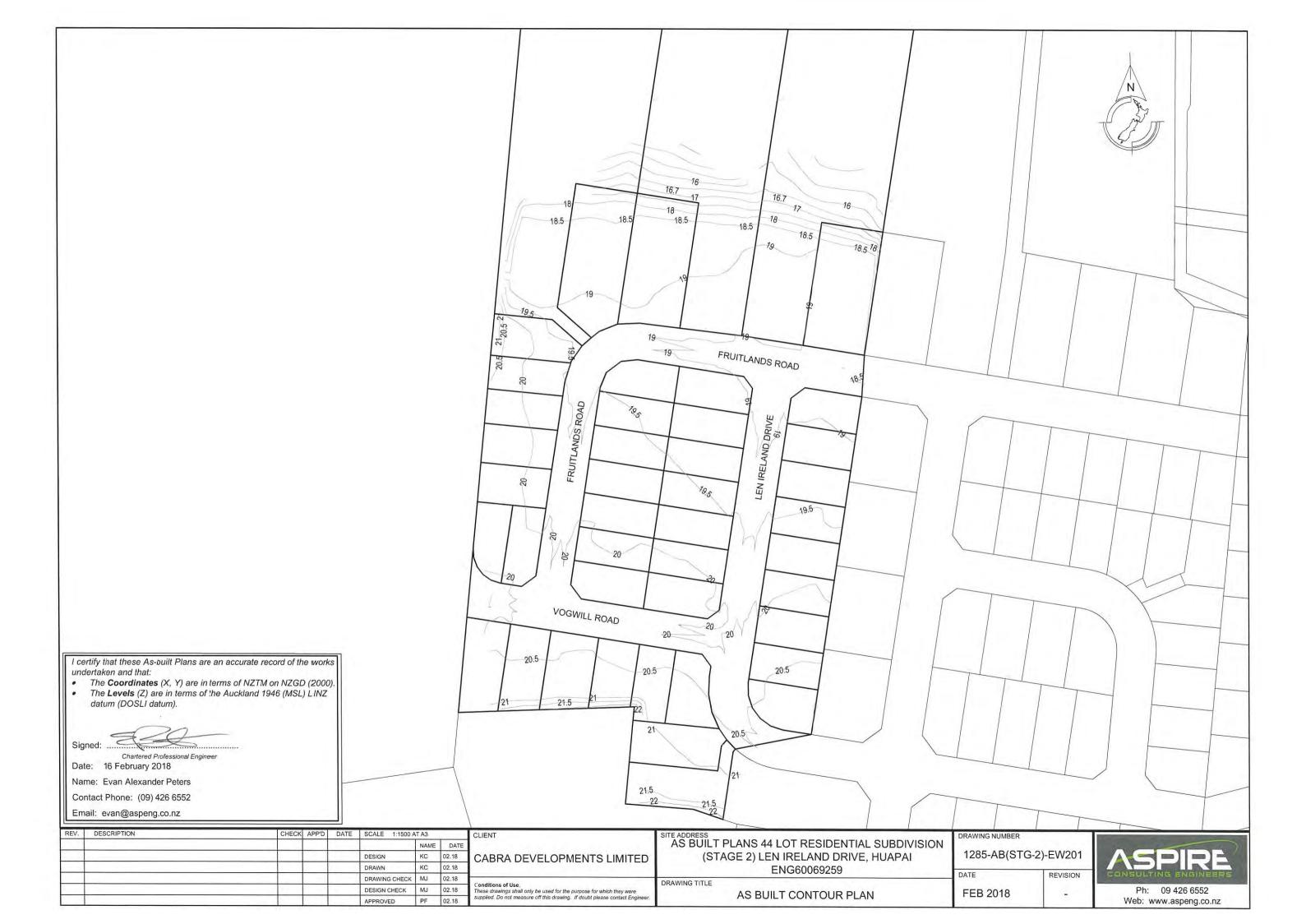
REV.	DESCRIPTION	CHECK APP'E	DATE	SCALE N.T.S			(
					NAME	DATE	
				DESIGN	KC	02.18	l
				DRAWN	KC	02.18	
				DRAWING CHECK	MJ	02.18	H
				DESIGN CHECK	MJ	02.18	7
				APPROVED	PF	02 18	8

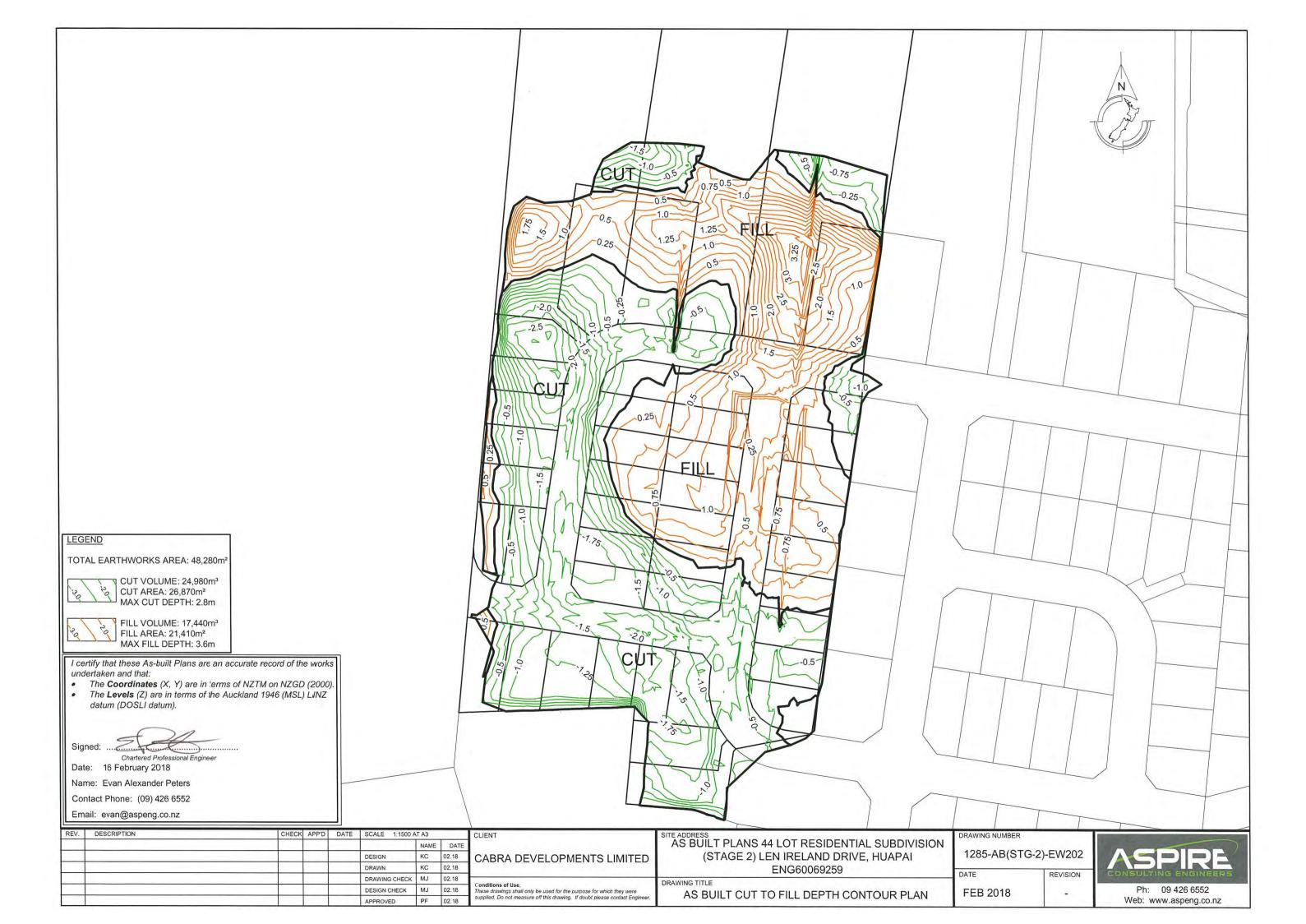
CABRA DEVELOPMENTS LIMITED

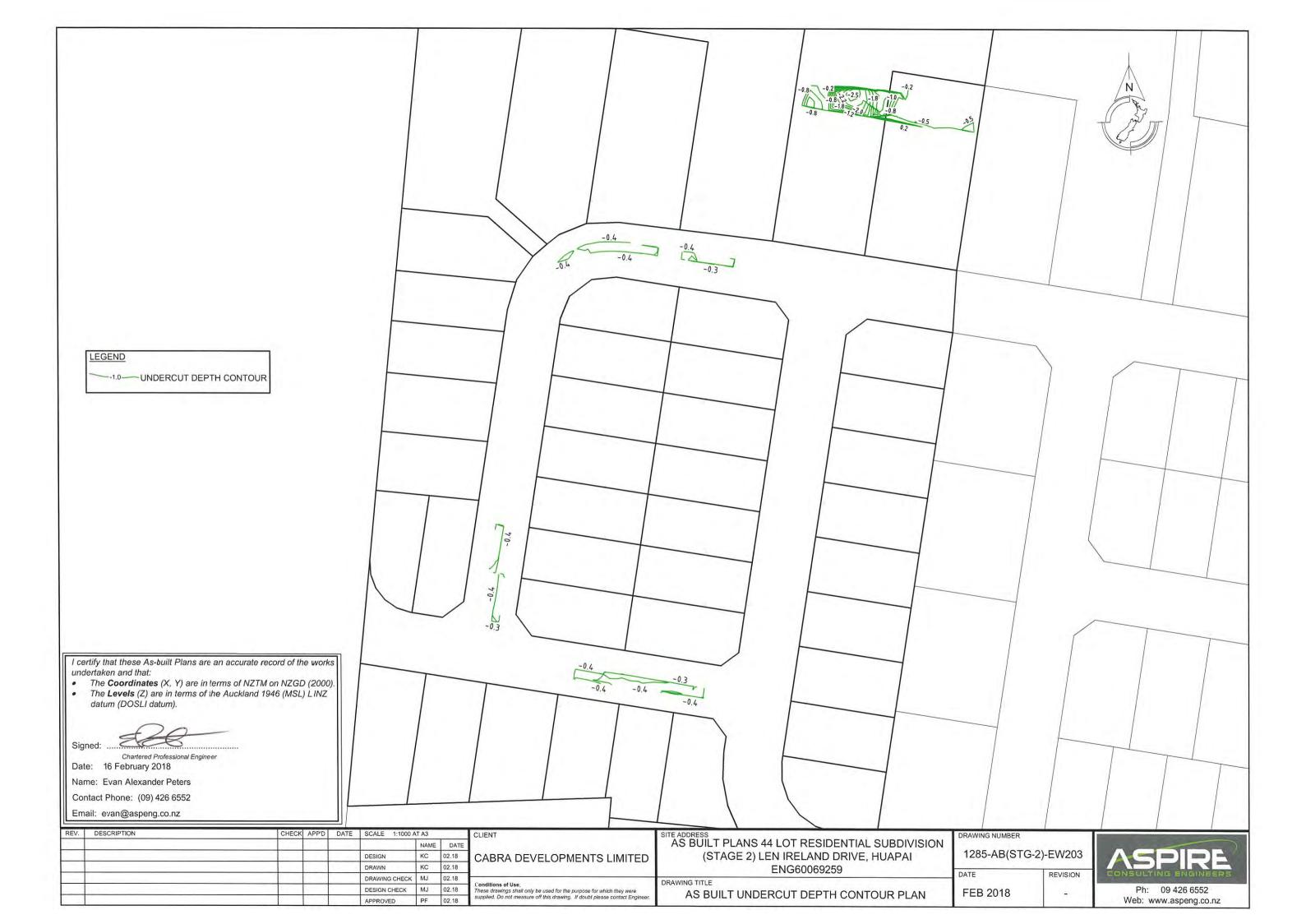
Conditions of Use.
These drawings shall only be used for the purpose for which they were supplied. Do not measure off this drawing. If doubt please contact Engineer

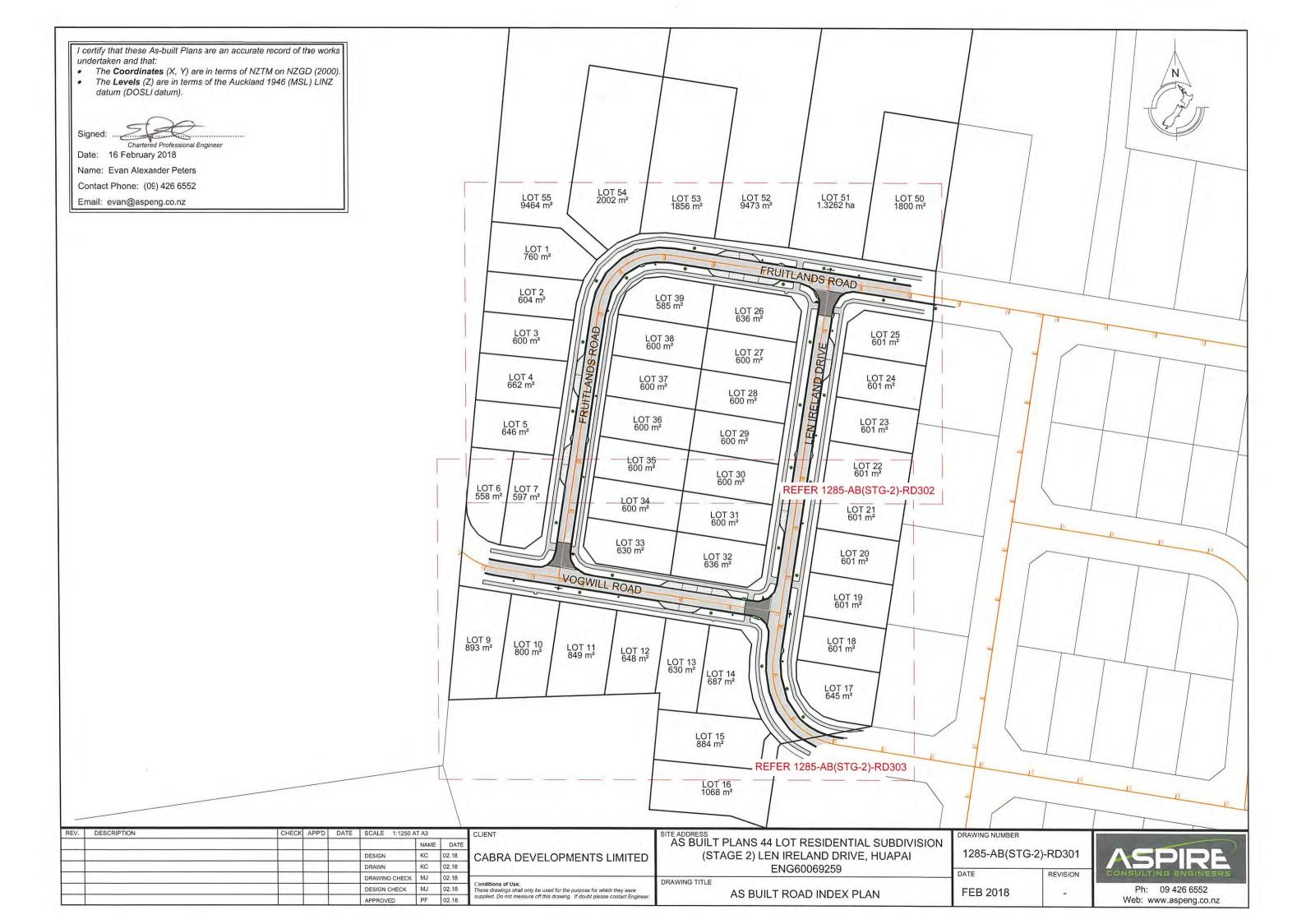
SITE ADDRESS
AS BUILT PLANS 44 LOT RESIDENTIAL SUBDIVISION
(STAGE 2) LEN IRELAND DRIVE, HUAPAI
ENG60069259

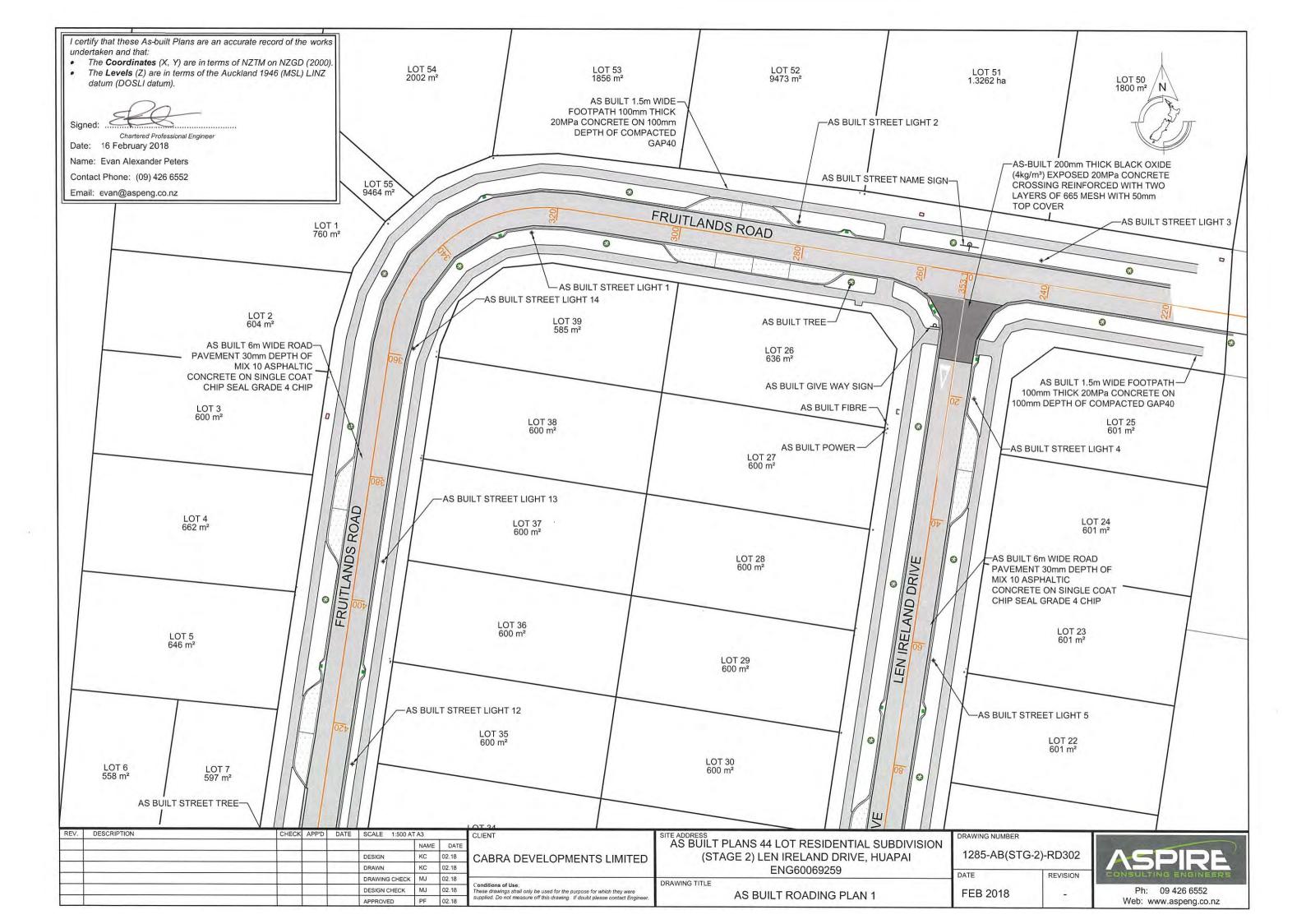
DRAWING TITLE

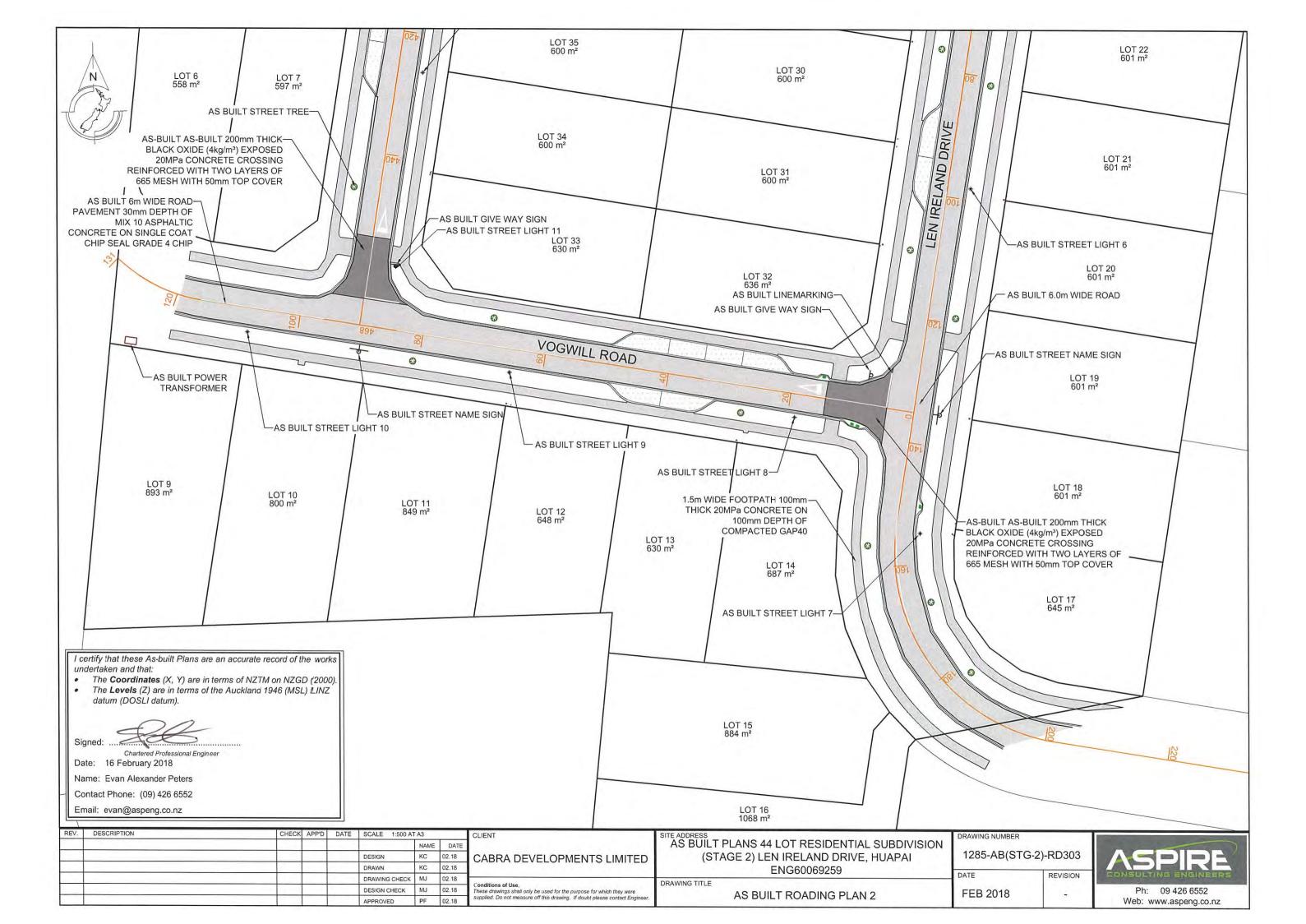

AS BUILT COORDINATE TABLES

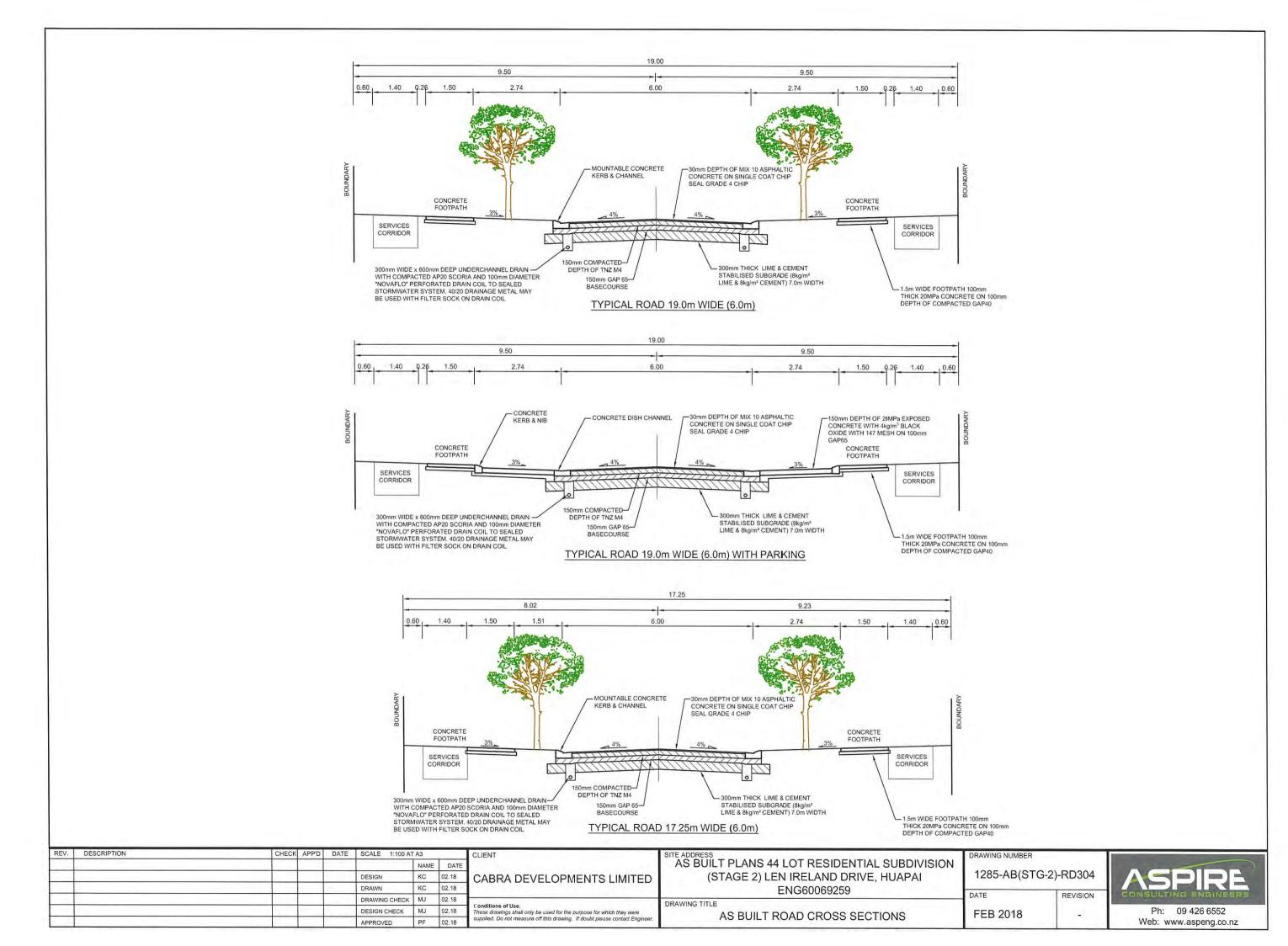

DRAWING NUMBER

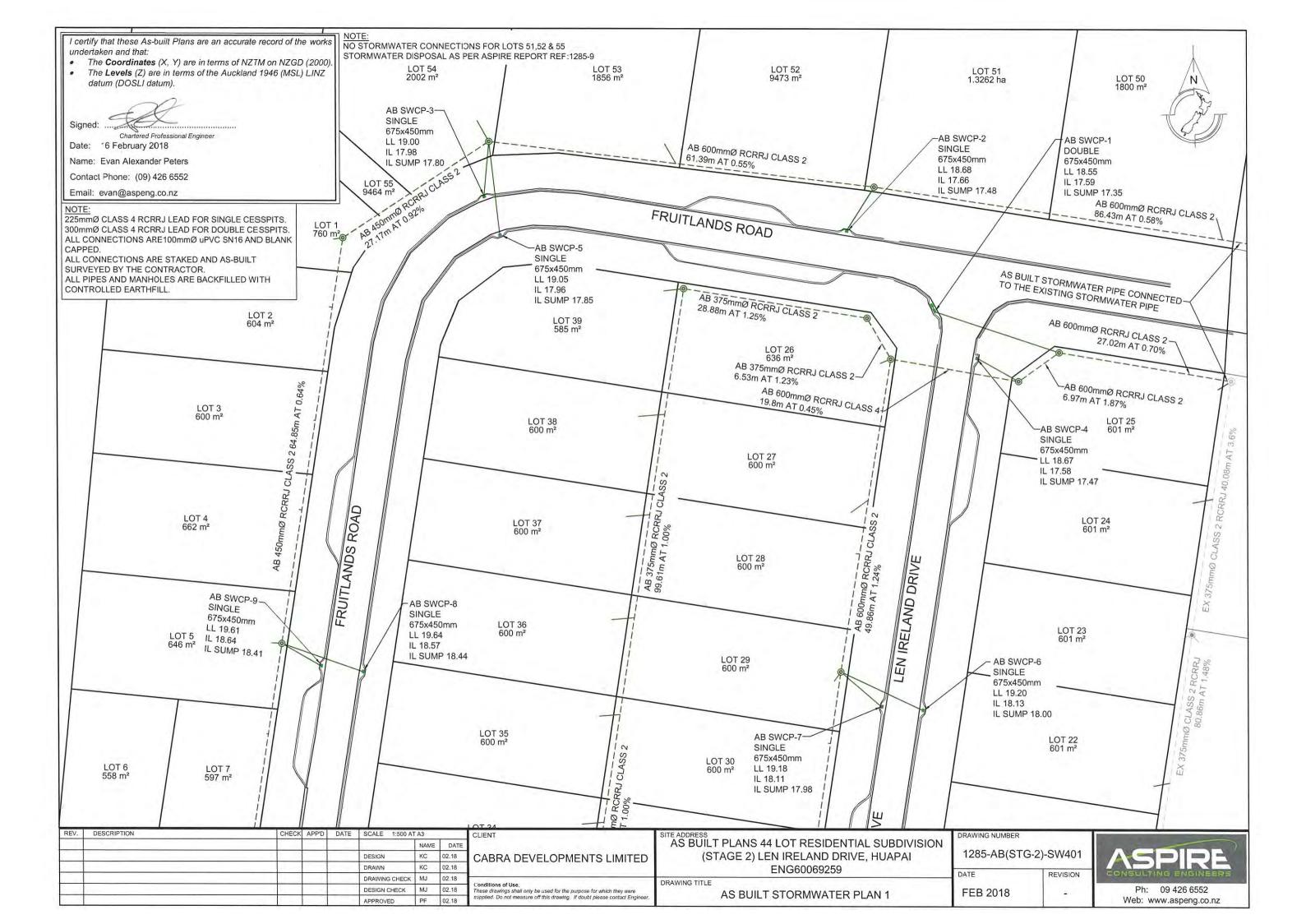

1285-AB(STG-2)-PG105

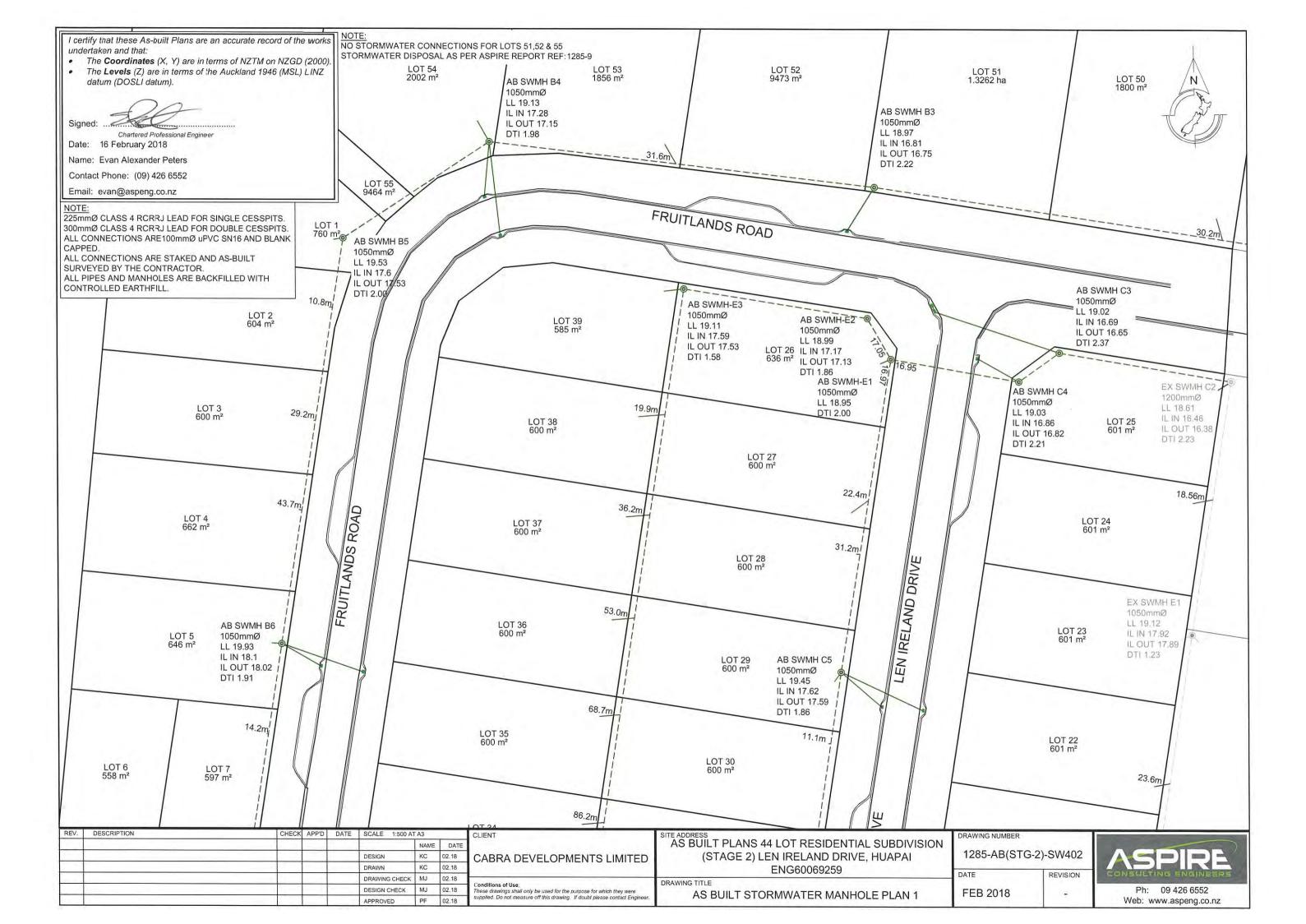

FEB 2018 -

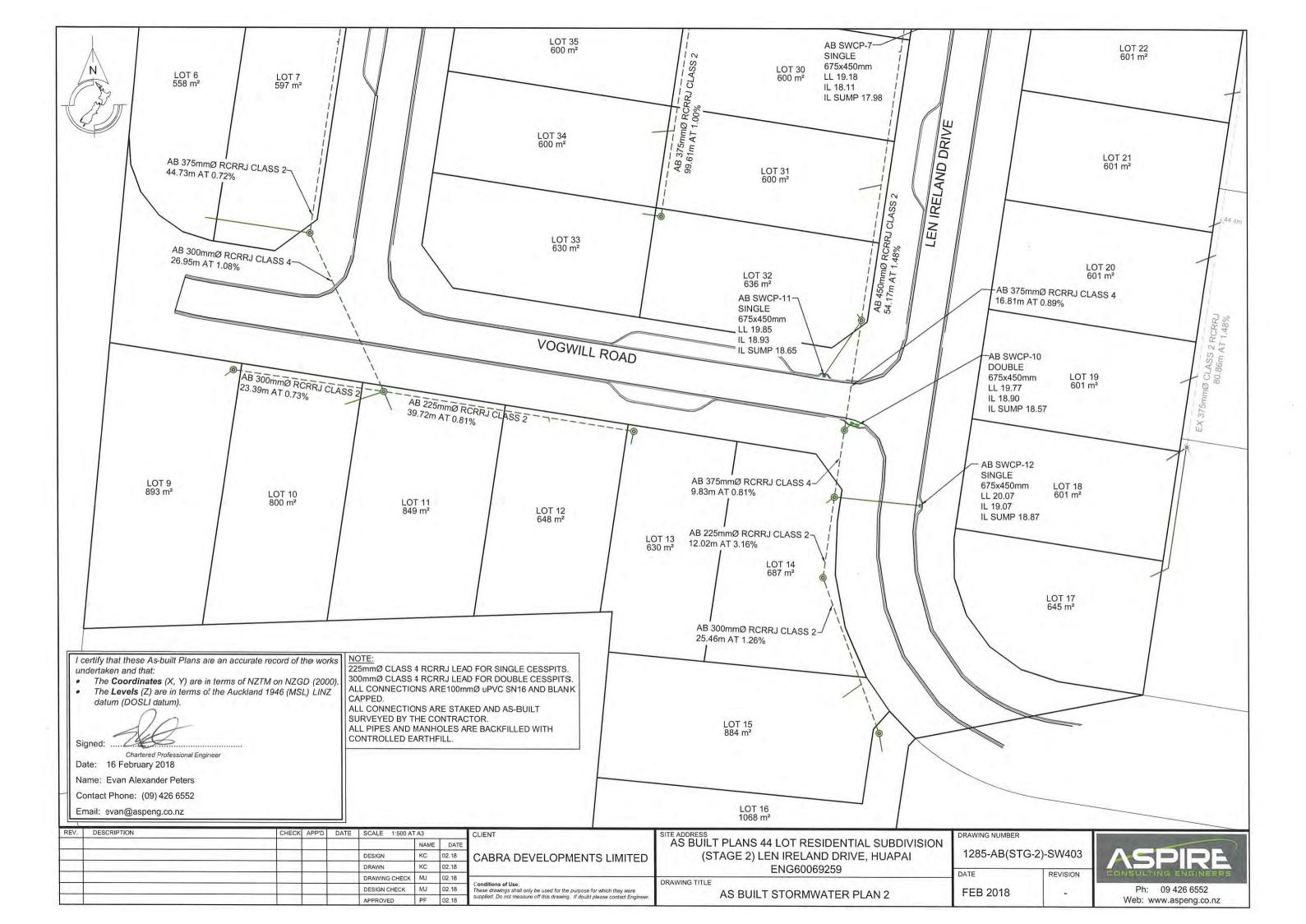


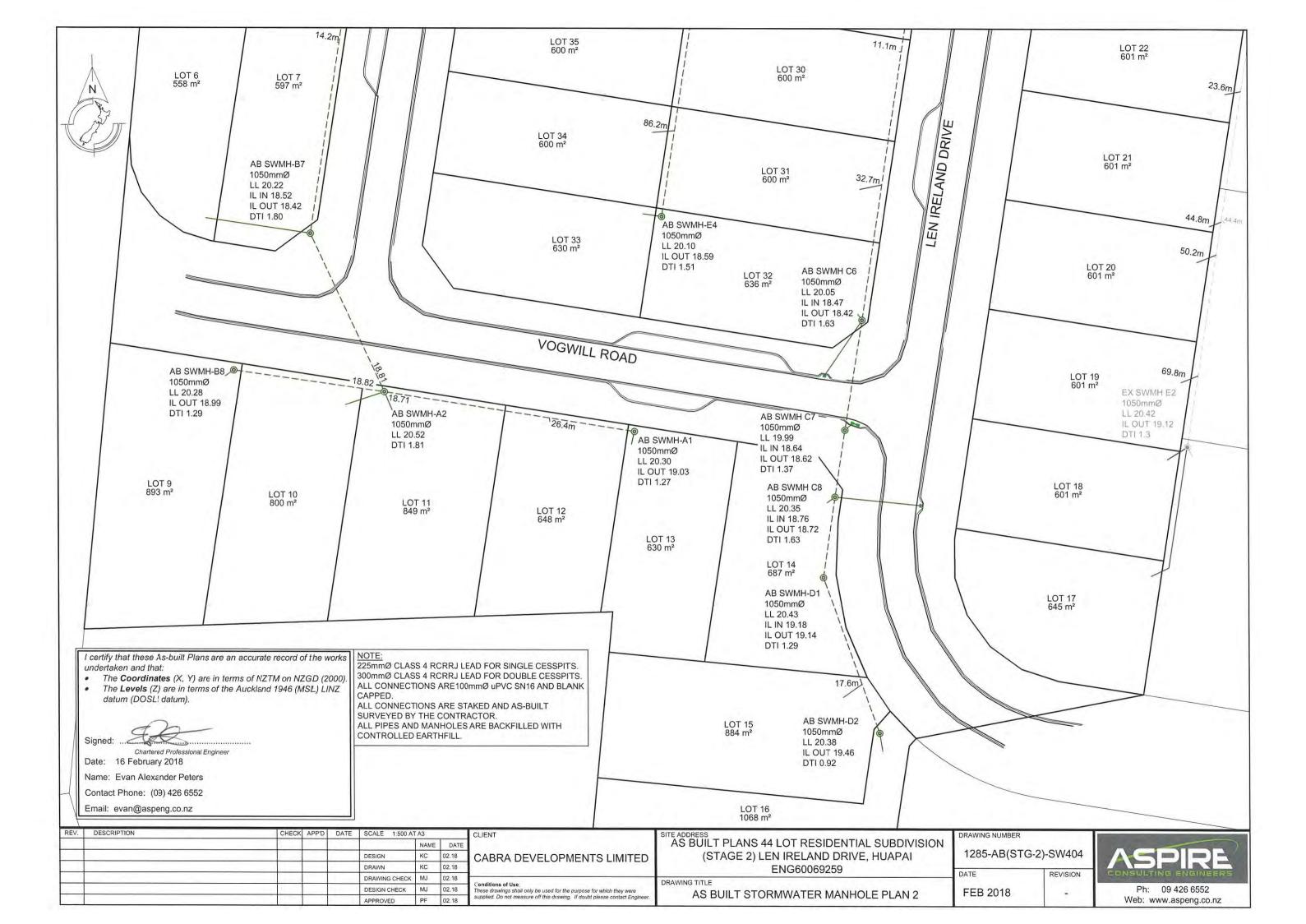


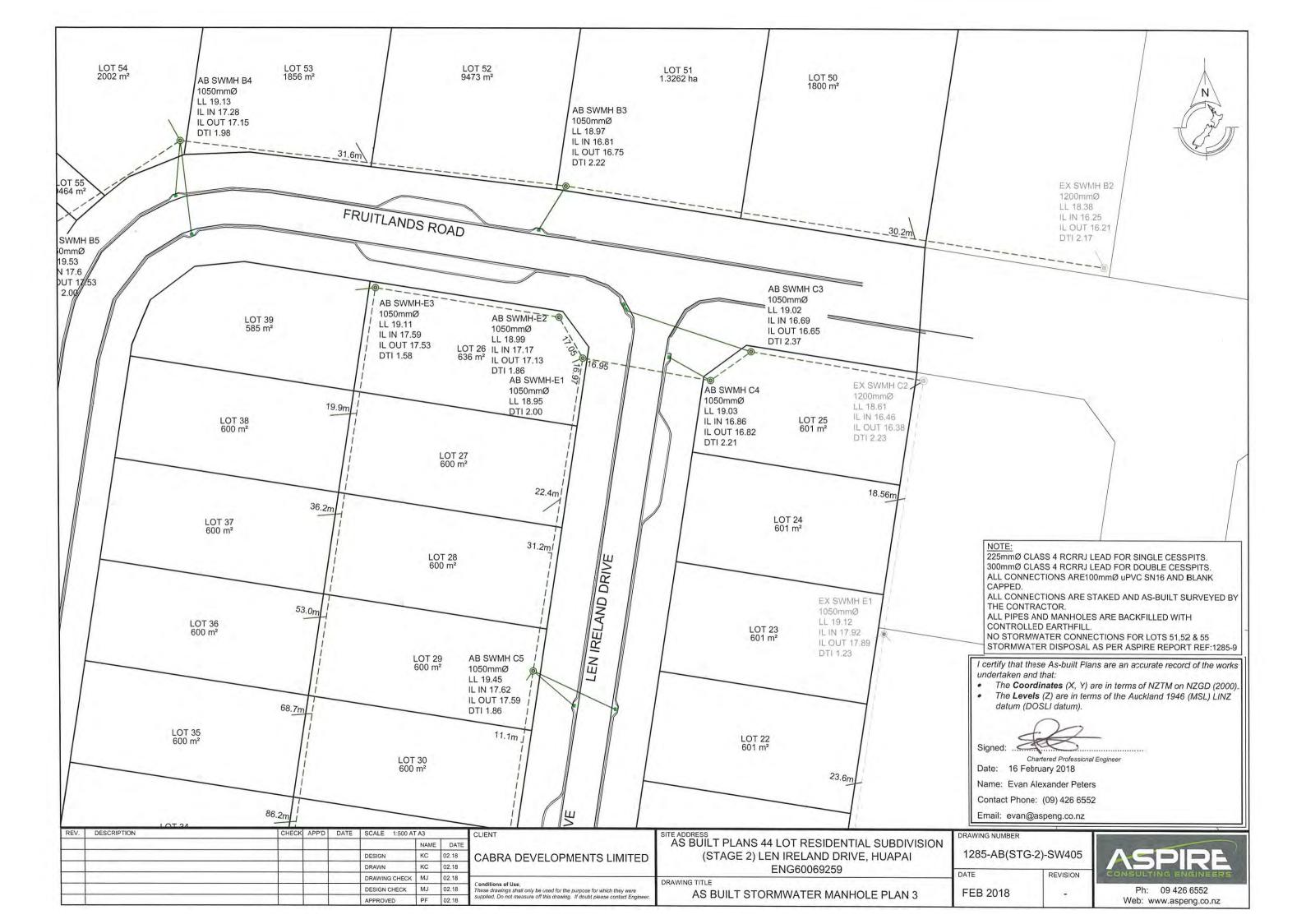


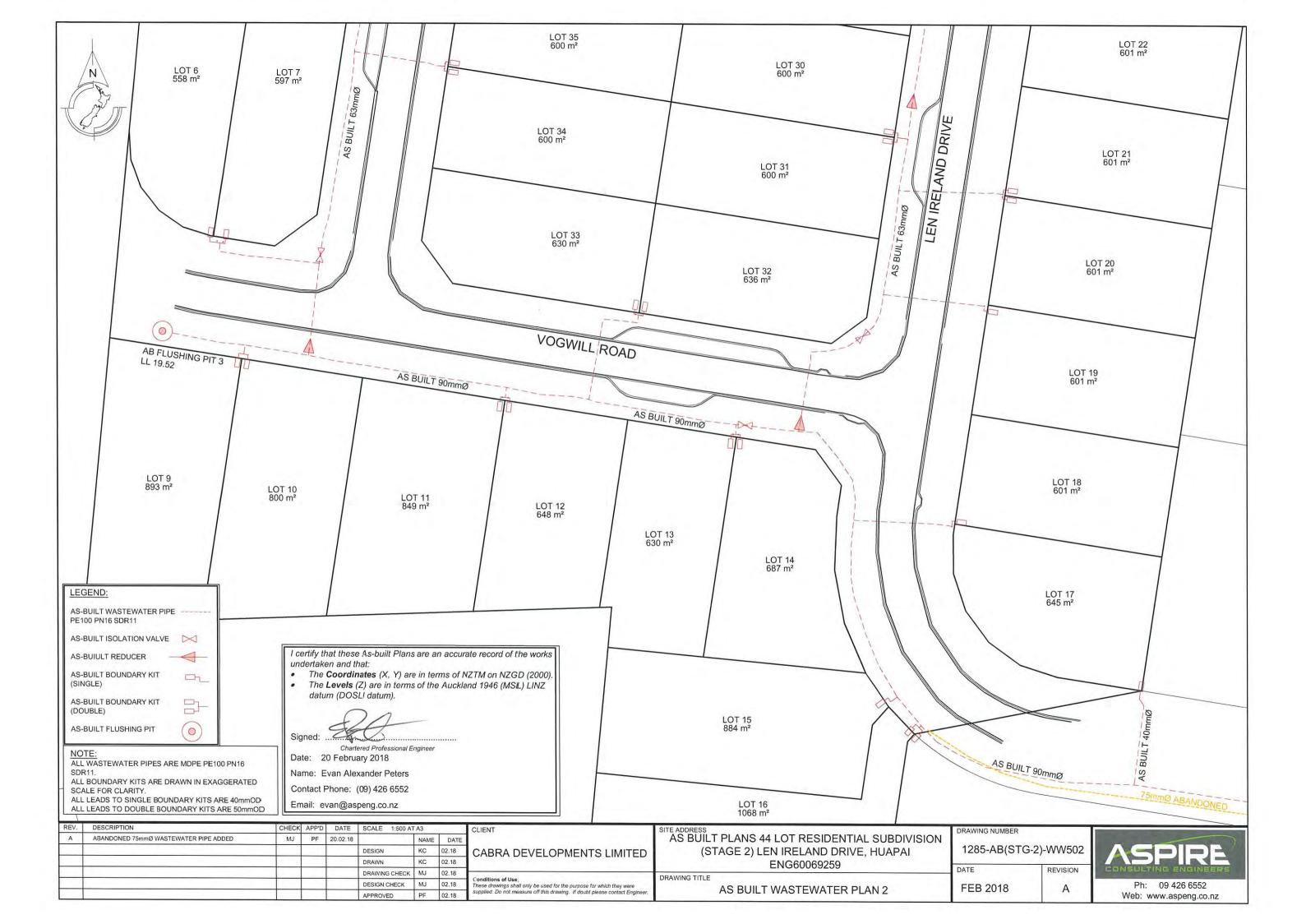

I certify that these As-built Plans are an accurate record of the works • The Coordinates (X, Y) are in terms of NZTM on NZGD (2000). The Levels (Z) are in terms of the Auckland 1946 (MSL) LINZ datum (DOSLI datum). Signed: Chartered Professional Engineer Date: 16 February 2018 Name: Evan Alexander Peters Contact Phone: (09) 426 6552 LOT 55 9464 m² LOT 52 9473 m² LOT 51 1.3262 ha LOT 50 1800 m² Email: evan@aspeng.co.nz LEGEND 100mm-200mm DEEP LOT 1 760 m² UNDERCUT BACKFILLED WITH COMPACTED GAP 65 BASECOURSE LOT 2 604 m² LOT 26 636 m² LOT 25 601 m² LOT 38 600 m² LOT 27 600 m² LOT 4 662 m² LOT 37 600 m² LOT 24 601 m² LOT 5 646 m² LOT 22 601 m² LOT 30 600 m² LOT 6 558 m² LOT 7 597 m² LOT 34 600 m² LOT 33 630 m² LOT 20 601 m² LOT 19 601 m² LOT 9 893 m² LOT 12 648 m² LOT 13 630 m² LOT 14 687 m² LOT 15 884 m² DESCRIPTION CHECK APP'D DATE SCALE 1:1250 AT A3 CLIENT SITE ADDRESS
AS BUILT PLANS 44 LOT RESIDENTIAL SUBDIVISION DRAWING NUMBER NAME DATE 1285-AB(STG-2)-RD305 (STAGE 2) LEN IRELAND DRIVE, HUAPAI 02.18 CABRA DEVELOPMENTS LIMITED KC 02.18 DRAWN ENG60069259 DATE REVISION DRAWING CHECK MJ 02.18 DRAWING TITLE Conditions of Use; These drawings shall only be used for the purpose for which they were supplied. Do not measure off this drawing. If doubt please contact Engine Ph: 09 426 6552

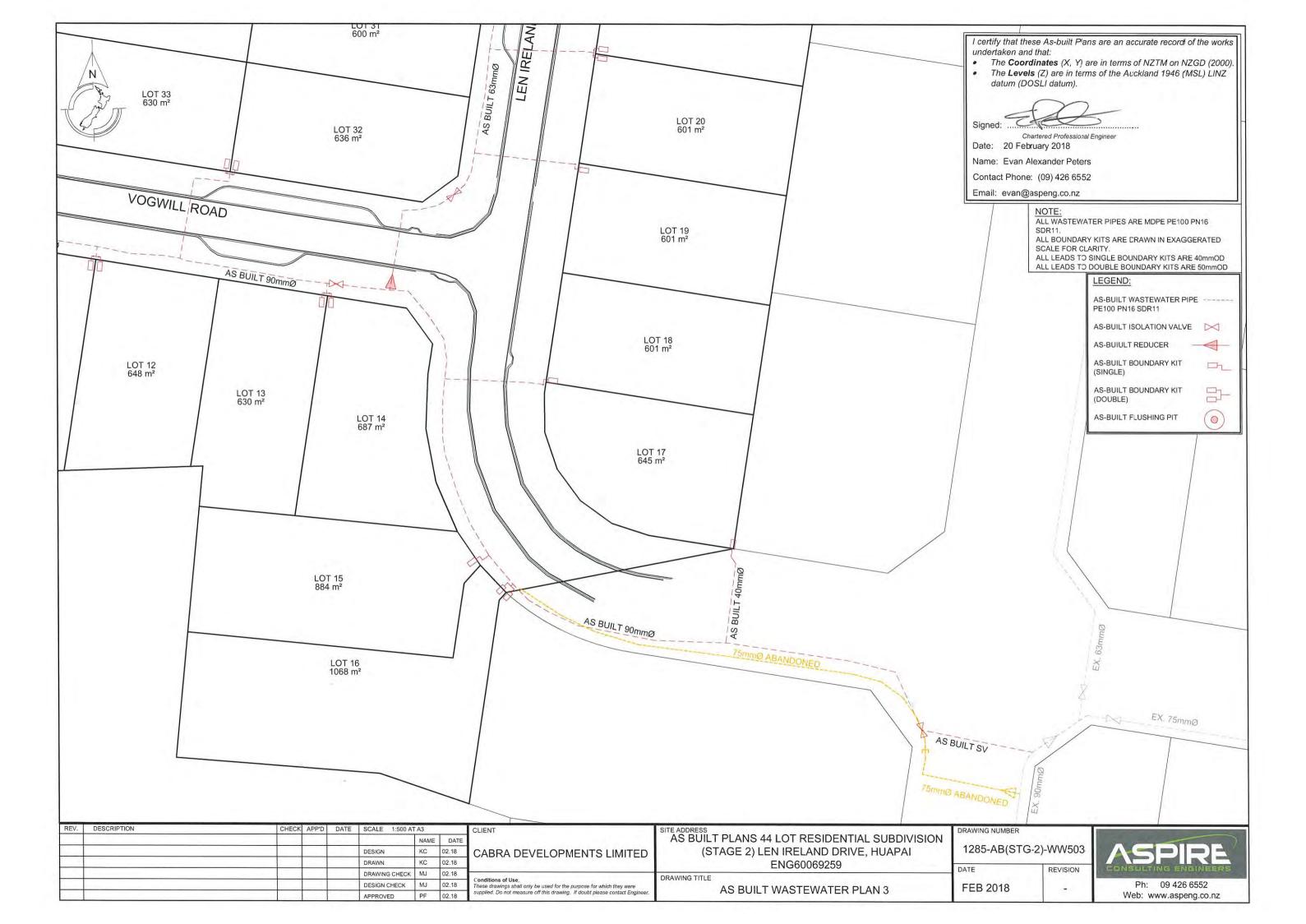

FEB 2018

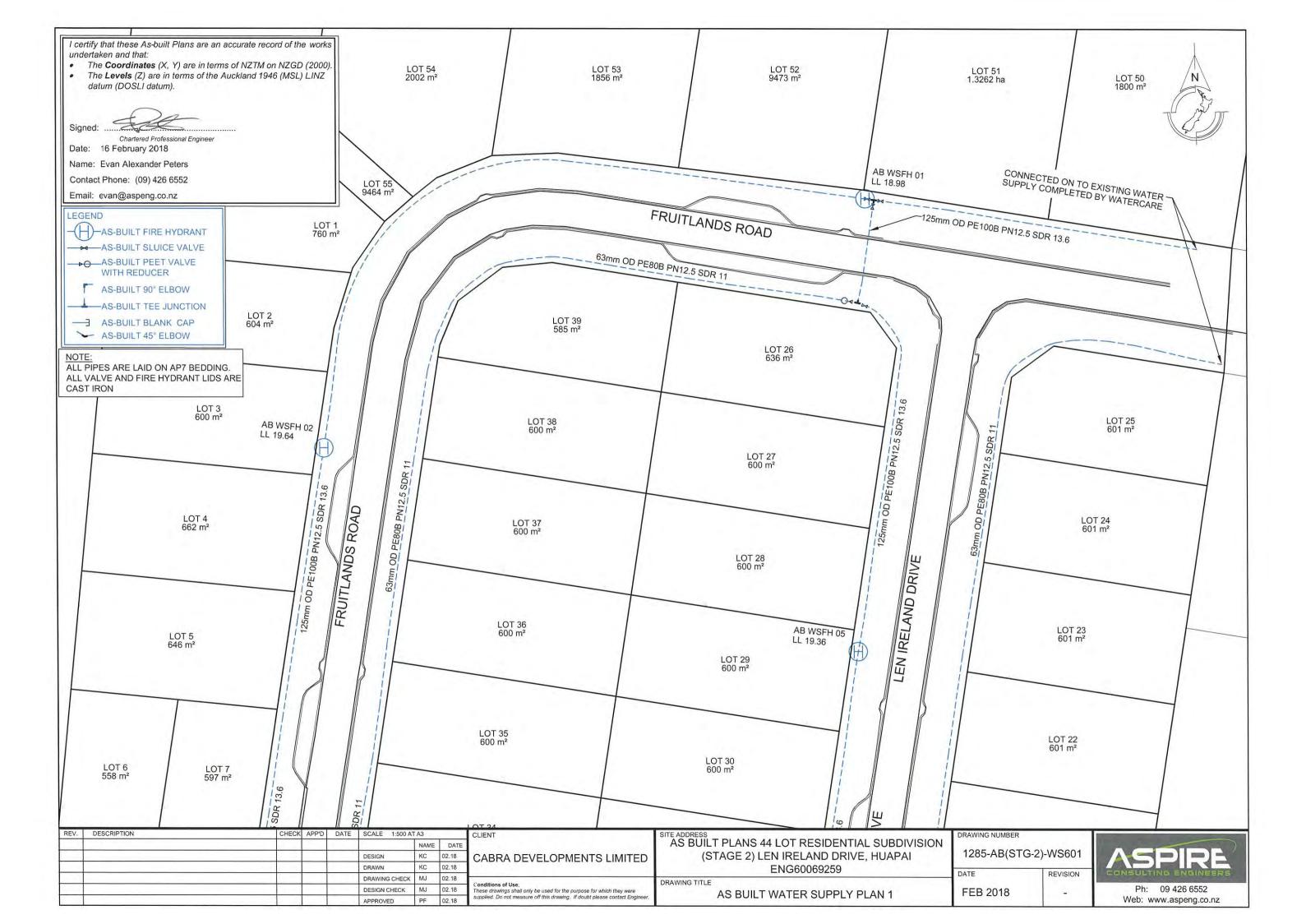

Web: www.aspeng.co.nz

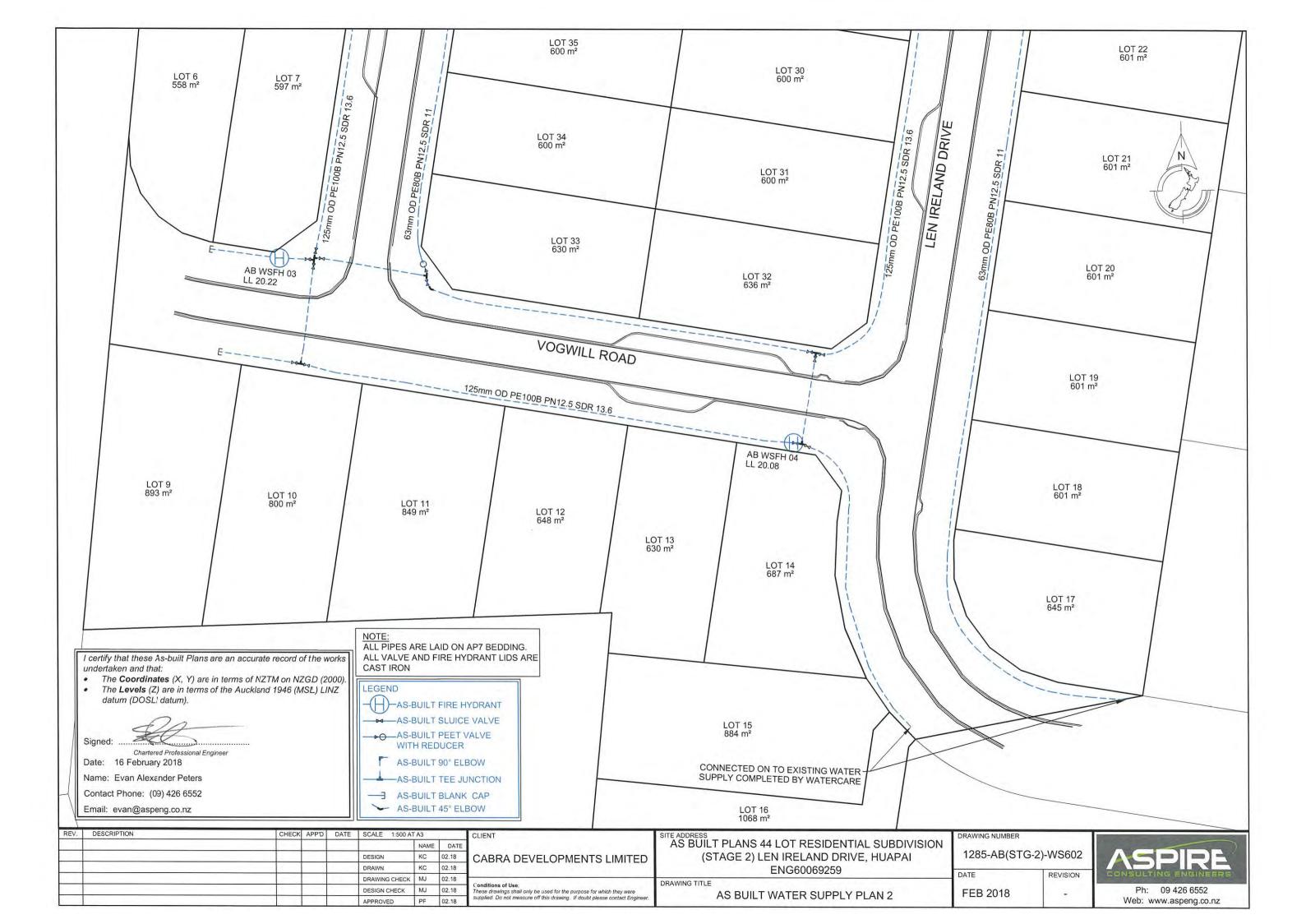

AS BUILT SUBGRADE UNDERCUT PLAN


DESIGN CHECK MJ 02.18









Appendix C

Laboratory Test Data

Report No: 17 0286 00

Page: 1 of 1

DETERMINATION OF THE LIQUID LIMIT & LINEAR SHRINKAGE TEST METHOD NZS 4402 : 1986 TEST 2.2 & 2.6

Job: Matua Road

Date of order: 3.11.17 Sample origin: Sample method: - Sample Description: -

Sample By: Client Date: 31.10.17

Test Details :

Test performed on : Whole Sample

History: Natural

Sample No.	Location	Depth (m)	Liquid Limit	Linear Shrinkage	Natural Water Content (%)
636F	Lots 5/6/7	-	107	25	43.6
637F	Lots 1/2	-	102	25	43.7
638F	Lots 10/11	-	112	29	48.1
639F	Lots 19/20	-	70	21	33.1
640F	Lots 23/24	-	64	18	27.3
641F	Lots 30/35	-	82	19	40.2
642F	Lots 27/38	-	75	18	38.5
643F	Lot 53	-	60	18	28.2

Comments:

 Tested By:
 EC
 Date : 7.11.17

 Calculated By :
 EC
 Date : 20.11.17

 Checked By :
 EC
 Date : 21.11.17

Appendix D

Field Test Data

202, 218 & 224 Matua Road

AKL2016_0046LAA Rev.0

PO Box 197 Orewa 0946

Cabra Developments Limited

AKI2016_0046

20/05/2016

Project:

Project No:

Location:

Client

Report No:

Report Date:

Client Address:

Client Reference:

LF11 Rev 2 Field Density NDM Soil Report

Auckland Laboratory

CMW Geosciences (NZ) Limited

Building C, 9 Piermark Drive, Rosedale, NZ 0632

PO Box 300206, Albany, Auckland, NZ 0752

Phone: +64 (09) 4144 632

Test Methods:

Notes: Solid Density:

NZS 4407.3.1:1991 NZS 4407.4.2.1:1991

Testing Locations Selected By:

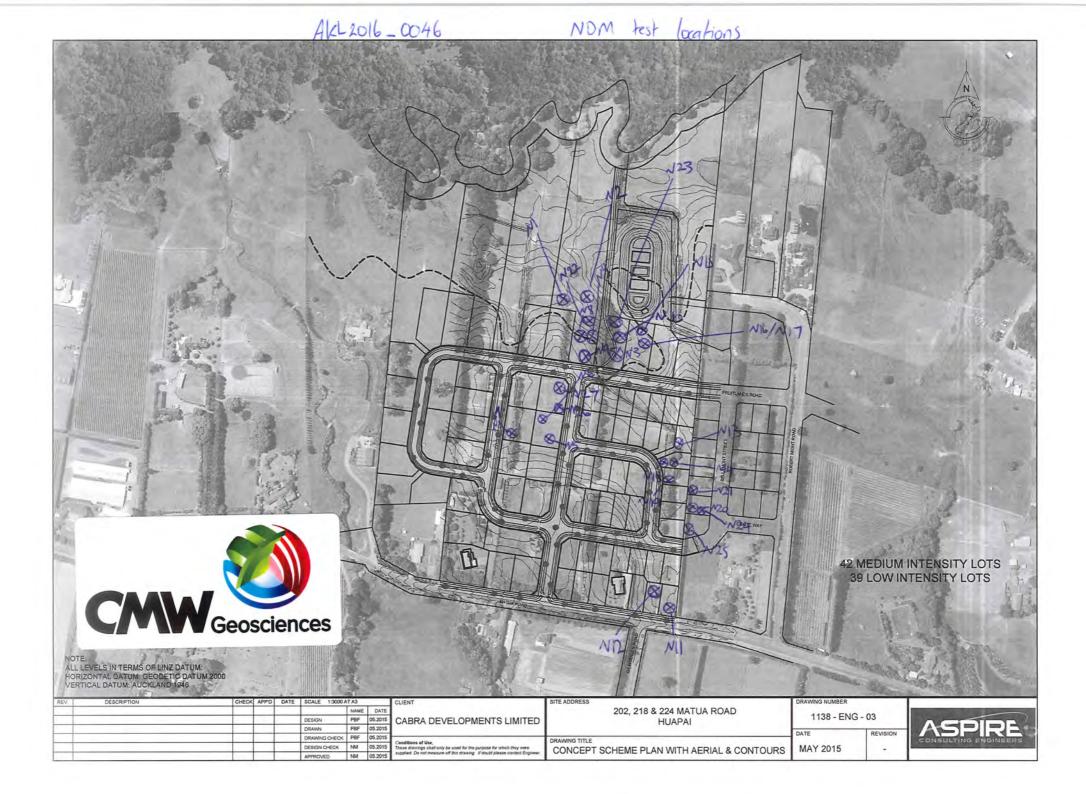
Assumed

NZS4407.4.2.2:1991

CMW Field Staff

			Test Location	n			n-situ Va	ne Shear	Strength	s				Field and	Laboratory Te	esting Data				
ite Sampled	Sample No.	Easting	Northing	RL/Details	Soil Description	Test 1 (kPa)	Test 2 (kPa)	Test 3 (kPa)	Test 4 (kPa)	Ave.	Gauge Wet Density (t/m³)	Gauge Dry Density (t/m³)	Gauge Water Content (%)	Gauge Air Voids (%)	Gauge Probe Depth	Oven Water Content (%)	Solid Density (t/m³)	Oven Dry Density (t/m³)	Calculated Air Voids (%)	Comment
15/12/2015	NI	Gully fill			CLAY	UTP	>209	UTP	194	>205	1.8240	1.4240	28.1	7.13	300	28.7	2.7	1,42	6.8	
	N2	Gully fill			CLAY	164	172	187	>209	>183	1.8400	1.3726	34.1	2.27	300	34.6	2.7	1.36	2.1	
25/12/2015	NE	Gully fill			CLAY	>191	>191	>191	163	>184	1.8910	1,4400	31.3	1.40	300	31.2	2.7	1.44	1.7	
	N4	Gully fill			CLAY	>191	>191	>191	>191	>191	1.8950	1.4350	32.0	0.73	300	31.1	2.7	1.44	1.5	
30/12/2015	N5	Gully fill			CLAY	>191	>191	>191	>191	>191	1.8950	1.4150	33.9	-0.53	300	25.0	2.7	1.52	5,9	
	N6.	Gully fill			CLAY	>191	>191	>191	>191	>191	1,9130	1.4960	27.9	2.76	300	26.7	2.7	1.50	3.7	
	N7	Gully fill			CLAY	177	>191	>191	156	>176	1,8270	1.3580	34.5	2.67	300	23.0	2.7	1.48	11.0	
5/01/2016	NS	Gully fill			CLAY	136	161	180	159	159	1,8600	1,4160	31.4	3.03	300	33.5	2.7	1.40	1.7	
	N9	Gully fill			CLAY	163	152	180	156	163	1,9050	1,4470	31.7	0.45	300	28.7	2.7	1.48	2.7	
	N10	Gully fill			CLAY	158	163	>191	>191	>176	1.8660	1.4110	32.3	2.09	300	29.0	2.7	1.44	4.5	
18/01/2016	N11	Southern Ea	stern gully		CLAY	82	97	116	119	104	0.71									
	N12	Southern Ea	stern gully		CLAY	105	140	100	146	123										
21/01/2016	N13	Eastern gull	y		CLAY	>209	164	157	140	>168	1.8752	1.4042	33.5	0.79	300	35.5	2.7	1,38	-0.4	
	N14	Eastern gull	у		CLAY	193	197	197	187	194	1.8857	1,4267	32.2	1.16	300	28.7	2.7	1,46	3.7	
22/01/2016	N15	North easte	rn gully		CLAY	146	>209	149	164	>167	1,7986	1.3128	37.0	2.69	300	33.9	2.7	1.34	4.7	
	N16	North easte	rn gully		CLAY	>209	>209	>209	>209	>209	1.7457	1.2624	38.3	4.80	300	39.0	2.7	1.26	4.5	
	N17	North easte	rn gully		CLAY	>209	>209	>209	>209	>209	1.7844	1.2967	37.6	3.09	300	36,2	2.7	1.32	4.1	
	N18	Eastern gull	y		CLAY	UTP	UTP	UTP	UTP	>209	1.8641	1.4128	31.9	2.44	300	30,2	2.7	1.44	3.7	
	N19	Eastern gull	y		CLAY	151	UTP	194	136	>173	1,9085	1.4474	31.9	0.18	300	27.6	2.7	1.50	3.3	
26/01/2016	N20	Eastern gull	y		CLAY	142	172	182	176	168	1.8106	1.3187	37.3	1.87	300	34.7	2.7	1.34	3.6	
	N21	Eastern gul	y		CLAY	UTP	UTP	UTP	UTP	>201	1.9148	1.4730	30.0	1,17	300	28.2	2.7	1.50	2.6	
	N22	North easte	rn gully		CLAY	UTP	UTP	UTP	UTP	>201	1.8730	1,4508	29.1	3,96	300	36.2	2.7	1.38	-0.7	
	N23	North easte	rn gully		CLAY	UTP	UTP	UTP	UTP	>201	1.8960	1.4502	30.7	1.61	300	25.6	2.7	1,50	5.4	
29/01/2016	N24	Southern Ea	stern gully		CLAY	UTP	179	194	>209	>198	1,8661	1.4202	31.4	2.71	300	31.5	2.7	1.42	2.8	
	N25	Southern Ea	stern gully		CLAY	UTP	>209	UTP	>209	>209	1.8658	1.4311	30.4	3.43	300	35.7	2.7	1.38	0.0	
	N26	Eastern gull	У		CLAY	>209	>209	>290	>209	>209	1.6733	1,1945	40.1	7.77	300	39.9	2.7	1.20	8.0	
	N27	Eastern gull	v		CLAY	151	>209	>209	146	>179	1.6188	1.0486	54.4	4.02	300	46.2	2.7	1.10	7.9	

This report should only be reproduced in full.


Created By: AP Checked By: CS

Authorised Signatory: W

Date: 15/12/2015 Date: 20/05/2016 Date: 20/05/2016

Page:

1 of 1

LF11 Rev 2 Field Density NDM Soil Report

Auckland Laboratory

CMW Geosciences (NZ) Limited

Building C, 9 Piermark Drive, Rosedale, NZ 0632

PO Box 300206, Albany, Auckland, NZ 0752

Phone: +64 (09) 4144 632

Test Methods:

Notes: Solid Density:

Assumed

AKI2016_0046 Huapai

AKL2016_0046LAB Rev.0

202, 218 & 224 Matua Road

Report No: Report Date:

20/05/2016

Client: Cabra Developments Limited

Client Address:

PO Box 197 Orewa 0946

Client Reference:

Project:

Project No:

Location:

NZS 4407.3.1:1991 NZS 4407.4.2.1:1991 NZS4407.4.2.2:1991

Testing Locations Selected By:

CMW Field Staff

			Test Locatio	on		b	n-situ Va	ne Shear	Strength	ş				Field and	Laboratory Te	esting Data				
ate Sampled	Sample No.	Easting.	Northing	RL/Details	Soil Description	Test 1 (kPa)	Test 2 (kPa)	Test 3 (kPa)	Test 4 (kPa)	Ave.	Gauge Wet Density (t/m³)	Gauge Dry Density (t/m³)	Gauge Water Content (%)	Gauge Air Voids (%)	Gauge Probe Depth	Oven Water Content (%)	Solid Density (t/m³)	Oven Dry Density (t/m³)	Calculated Air Voids (%)	Comments
29/01/2016	N28	North Easte	rn gully		CLAY	>209	>209	>209	>209	>209	1.8672	1.4611	27.8	5.18	300	29,3	2.7	1.44	4.2	
	N29	North Easte			CLAY	>209	>209	>209	UTP	>209	1.9164	1.4903	28.6	2.10	300	28.1	2.7	1.50	2.5	
3/02/2016		South Easte			CLAY	UTP	UTP	UTP	UTP	>209	1.8026	1.3213	36.4	2.82	300	31.2	2.7	1.38	6.2	
	N31	South Easte			CLAY	UTP	UTP	UTP	UTP	>209	1.8371	1.3606	35.0	1.82	300	36.2	2.7	1.34	1.2	
9/02/2016		South Easte			CLAY	>209	>209	179	166	>191	1.7941	1.3193	36.0	3.48	300	33.1	2.7	1.34	5.4	
	N33	South Easte			CLAY	>209	164	184	131	>172	1.8324	1.2887	42.2	-2.22	300	36.3	2.7	1.34	1.4	
	N34	South Easte			CLAY	>209	164	184	131	>172	1.8294	1.2965	41.1	-1.42	300	33.3	2.7	1.38	3.5	
12/02/2016		Lot 14			CLAY	141	148	143	160	148	1.8429	1.3809	33.5	2.56	300	31.8	2.7	1.40	3.8	
15/02/2016		Lot 14			CLAY	186	171	179	>198	>184	1.8089	1.3282	36.2	2.63	300	31.8	2.7	1.38	5.5	
	N37	North of Lo	t 14		CLAY	>198	184	UTP	191	>193	1.8575	1.3588	36.7	-0.30	300	33.8	2.7	1,38	1.7	
16/02/2016		Lot 68			CLAY	>198	>198	UTP	UTP	>198										
	N39	Lot 75			CLAY	UTP	UTP	UTP	UTP	>198	1.8492	1,4002	32.1	3.14	300	27.3	2.7	1.46	6.5	
23/02/2016		Lot 24			CLAY	134	142	120	155	138	1.8601	1.4169	31.3	3.10	300	31	2.7	1.42	3.4	
	N4I	Lot 24			CLAY	92	123	124	130	117										Fail
	N42	Lot 14			CLAY	148	155	142	155	150	1.7747	1.2884	37.7	3.54	300	37.9	2.7	1.28	3,5	
Lancación de la constantina della constantina de	-	15.0		-	TIME	1000	LITE	UTF			1.9054	1.4270	33.5	-0.80	200	30.3	2.7	1.46	1.6	
										3156	1.8826	1.4362	31.1	2.07	300	28.9	2.7	1.46	3.7	
											1.7874	1.2859	39.0	2.11	300	36.2	2.7	1.32	3.9	
											1.8979	1.4312	32.6	0.22	300	31.5	2.7	1.44	1.1	LENGTHANIS
10/03/2016	N47	Lot 52			Lime stabilised CLAY	167	167	>198	186	>180	1.8152	1.3913	30.5	5.99	300	33.2	2.7	1.36	4.3	
ear set seed	N48	Lot 52			Lime stabilised CLAY	155	164	167	150	159	1.7922	1.3221	35.6	3.92	300	34.2	2.7	1.34	4.9	
11/03/2016		Lot 52			Lime stabilised CLAY	>198	>198	>198	>198	>198	1.8079	1.3724	31.9	5.34	300	30.1	2.7	1.38	6.7	
	N50	Lot 52			Lime stabilised CLAY	>198	UTP	UTP	UTP	>198	1.8464	1.4534	27.2	6.78	300	28.9	2.7	1.44	5.6	
14/03/2016		Lot 53			Lime stabilised CLAY	UTF	UTP	UTP	UTP	>198	1.8070	1,3448	34.4	3.87	7 300	35.1	2.7	1.34	3.5	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N52	Lot 53		4	Lime stabilised CLAY	UTF	UTF	UTP	UTP	>198	1.8767	1,5507	21.0	9.90	300	28.2	2.7	1.46	4.5	
15/03/2016		Lot 53			Lime stabilised CLAY	195	>198	>198	>198	>197	1,8109	1.3349	35.7	2,85	300	40.4	2.7	1,30	0.2	
	N54	Lot 53	M.		Lime stabilised CLAY	UTF	UTF	UTP	UTP	UTP	1.8915	1,4729	28.4	3.50	300	23,4	2.7	1.54	7.4	

This report should only be reproduced in full.

Created By: AP

Checked By: CS Authorised Signatory: Date: 02/02/2016 Date: 20/05/2016 Date: 20/05 /2016

Page:

1 of 1

AKL 2016-0046 42 MEDIUM INTENSITY LOTS Geosciences 39 LOW INTENSITY LOTS NOTE: ALL LEVELS IN TERMS OF LINZ DATUM: HORIZONTAL DATUM: GEODETIC DATUM 2000 VERTICAL DATUM: AUCKLAND 1946 CHECK APP'D DATE SCALE 1:3000 AT A3 202, 218 & 224 MATUA ROAD HUAPAI 1138 - ENG - 03 PBF 05.2015 CABRA DEVELOPMENTS LIMITED **ASPIRE** PBF 05.2015 REVISION DRAWING CHECK PBF 05.2015 DRAWING TITLE CONCEPT SCHEME PLAN WITH AERIAL & CONTOURS MAY 2015

LF10 Rev 4 Soil Core Sample Density Report

Soil Description

Auckland Laboratory

Bulk Density

(t/m3)

1.66

CMW Geosciences (NZ) Limited

Building C, 9 Piermark Drive, Rosedale, NZ 0632 PO Box 300206, Albany, Auckland, NZ 0752

Dry Density

(t/m3)

1.16

Phone: +64 (09) 4144 632

Project: Project No: 202, 218 & 224 Matua Road

Location:

Huapai

AKI2016_0046

Report No:

AKL2016 0046LAC Rev.0

Report Date:

Client Reference:

Date Sampled

20/05/2016

Easting

Client: Client Address:

PO Box 197 Orewa 0946

Cabra Developments Limited

Test Location

RL/Details

CLAY

Northing

Test Methods: NZS 4402:1986 5.1.3 Solid Density: NZS 4402:1986 2.1

Field and Laboratory Testing Data

Content (%)

43.7

Testing Locations Selected By:

Notes:

Solid

Density

(t/m3)

2.7

Assumed CMW Field Staff

Calculated

Air Voids

(%)

6.4

29/01/2016 C1 North Eastern gully This report should only be reproduced in full.

Sample No.

Created By: AP

Checked By: CS

Authorised Signatory:

Date: 29/01/2016 Date: 20/05/2016

Test 1 Test 2 Test 3

151 >209 >209

(kPa)

(kPa)

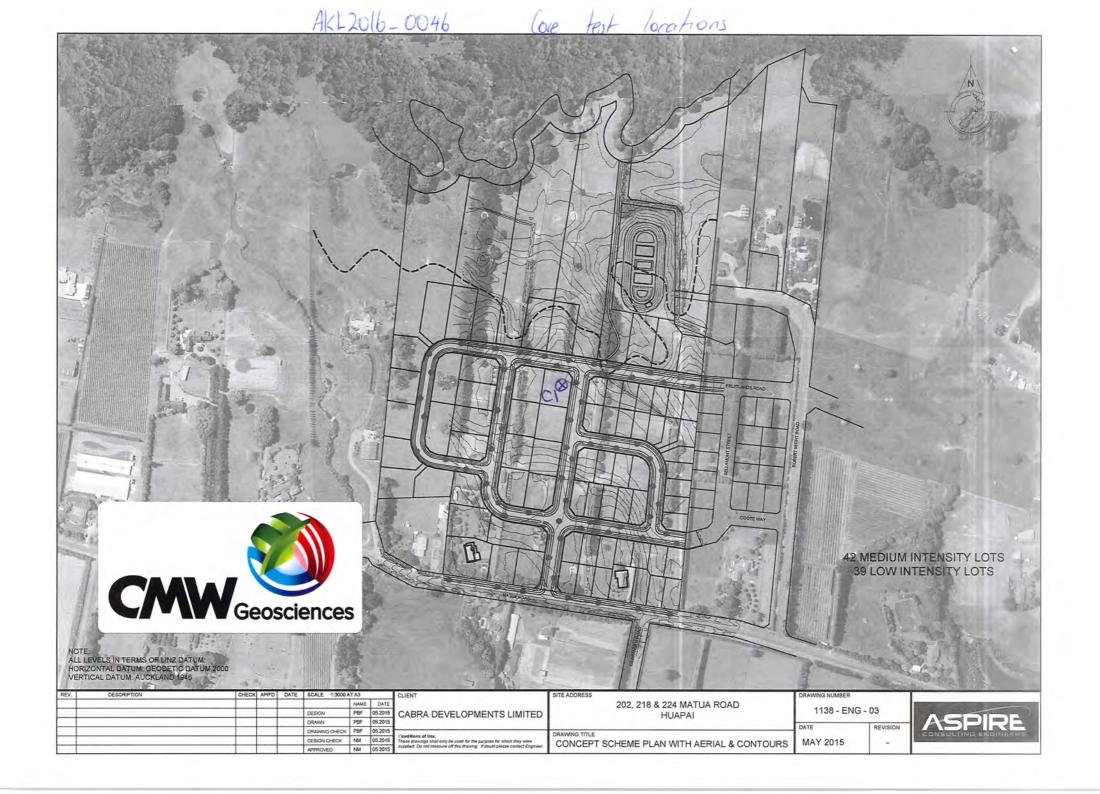
In-situ Vane Shear Strengths

(kPa)

Test 4

(kPa)

Ave.


146 >179

Date: 20/05/2016

Page:

Comments

1 of 1

202, 218 & 224 Matua Road

AKL2016_0046LAD Rev.0

PO Box 197 Orewa 0946

Cabra Developments Limited

AKI2016_0046

20/05/2016

Huapai

Project:

Project No:

Location:

Client:

Report No:

Report Date:

Client Address:

Client References

LF11 Rev 2 Field Density NDM Soil Report

Auckland Laboratory

CMW Geosciences (NZ) Limited

Building C, 9 Piermark Drive, Rosedale, NZ 0632

PO Box 300206, Albany, Auckland, NZ 0752

Phone: +64 (09) 4144 632

Notes:

Assumed

Test Methods: NZS 4407.3.1:1991

Solid Density:

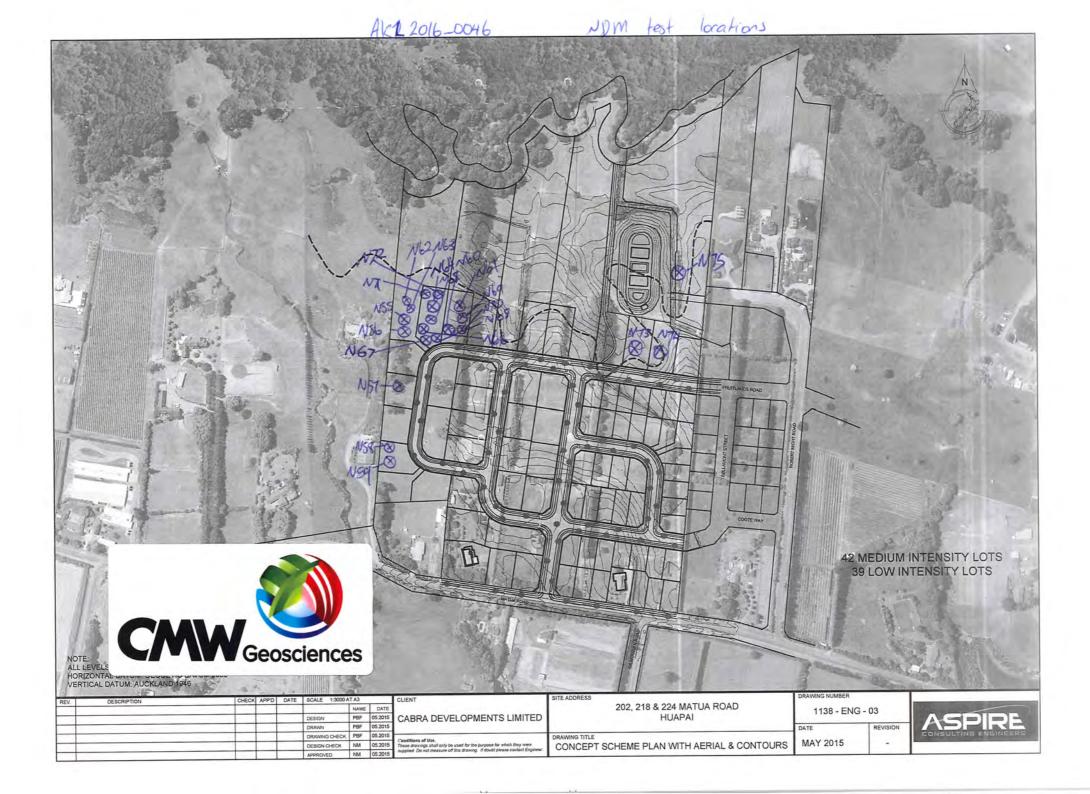
NZS 4407.4.2.1:1991

Testing Locations Selected By:

CMW Field Staff

NZS4407.4.2.2:1991

			Test Location	on		- Ir	ı-situ Va	ne Shear	Strength	5				Field and	Laboratory Te	sting Data				
ite Sampled	Sample No.	Easting	Northing	RL/Details	Soil Description	Test 1 (kPa)	Test 2 (kPa)	Test 3 (kPa)	Test 4 (kPa)	Ave.	Gauge Wet Density (t/m³)	Gauge Dry Density (t/m³)	Gauge Water Content (%)	Gauge Air Voids (%)	Gauge Probe Depth	Oven Water Content (%)	Solid Density (t/m³)	Oven Dry Density (t/m³)	Calculated Air Voids (%)	Comments
15/03/2016	NS5	Lot 55 south			Lime stabilised Sandy CLAY	155	158	>198	>198	>177	1.8782	1.4466	29.8	3.17	300	30.0	2.7	1.44	3.1	
	N56	Lot 55 south			Lime stabilised Sandy CLAY	153	155	158	164	158	1.8013	1.3793	30.6	6.63	300	28.1	2.7	1.40	8.4	
	N57	Lot 58			Lime stabilised CLAY	UTP	UTP	>198	>198	>198	1.8318	1.4177	29.2	5.99	300	25.8	2.7	1.46	8.5	
	N58	Lot 59 north			Lime stabilised Silty CLAY	195	169	198	198	190	1.7721	1.3313	33.1	6.51	300	32.5	2.7	1,34	7.0	
	N59	Lot 59 south			Lime stabilised Silty CLAY	150	169	184	198	175	1.8256	1.3672	33.5	3.42	300	30.1	2.7	1,40	5.8	
17/03/2016	N60	Lot 53 South			Lime stabilised Silty CLAY	UTP	UTP	UTP	UTP	>198	1.8664	1.4197	31,5	2.66	300	25.5	2.7	1.48	7.0	
	N61	Lot 53 North			Lime stabilised Silty CLAY	>198	>198	>198	>198	>198	1.8214	1.3773	32.2	4.48	300	26.7	2.7	1,44	8.4	
	N62	Lot 55 South			Lime stabilised Silty CLAY	UTP	UTP	UTP	UTP	>198	1.8472	1.4203	30.1	4.61	300	24.6	2.7	1.48	8.6	
	N63	Lot 55 North			Lime stabilised Silty CLAY	UTP	UTP	UTP	UTP	>198	1.8845	1.4477	30.2	2.60	300	32.2	2.7	1.42	1.3	
21/03/2016	N64	Lot 53 South			Lime stabilised Silty CLAY	UTP	UTP	UTP	UTP	>198	1.9145	1.5214	25.8	4.26	300	23.7	2.7	1.54	6.0	
22/03/2016	N65	Lot 53			Lime stabilised Silty CLAY	195	198	>198	>198	>197	1.8214	1.4250	27.8	7.49	300	27.0	2.7	1.44	8.2	
30/03/2016	N66	Lot 54			CLAY	UTP	UTP	UTP	UTP	>198	1,8990	1.4786	28.4	3.10	300	26.7	2.7	1,50	4.4	
31/03/2016	N67	Lot 53			CLAY	147	147	184	>198	>169	1.8701	1.3968	33.9	0.83	300	31.7	2.7	1.42	2.4	
	N68	Lot 54			CLAY	141	155	161	>198	>164	1.8307	1.3353	37.1	0.90	300	37.5	2.7	1.34	0.6	
5/04/2016	N69	Lot 53			Lime stabilised Silty CLAY	>198	>198	>198	>198	>198	1.8093	1.3649	32.6	4.91	300	33.5	2.7	1.36	4.4	
	N70	Road Underc	ut fill		Lime stabilised Silty CLAY	>198	>198	>198	>198	>198	1.7844	1.3514	32.0	6.55	300	31.4	2.7	1.36	7.1	
14/04/2016	N71	Lot 55			CLAY	>198	155	161	150	>166	1.8303	1.3561	35.0	2.25	300	38.0	2.7	1.32	0,5	
	N72	Lot 52			CLAY	178	186	>198	>198	>190	1.9197	1.4696	30.6	0.46	300	27.7	2.7	1.50	2.7	
26/04/2016	N73	North Easter	n Gully		Sandy CLAY	178	155	161	147	160	1.8696	1.4267	31.0	2.77	300	21.8	2.7	1.54	9.7	
	N74	North Easter	n Gully		Sandy CLAY	158	178	169	169	169	1.8656	1.4218	31.2		300	28.5	2.7	1.46		
	N75	North Easter	n Gully		CLAY	>198	>198	UTP	UTP	>198	1,8312	1.4127	34.7	6.10	300	40.7	2.7	1,30	-1.2	


This report should only be reproduced in full.

Created By: AP Checked By: CS

Date: 17/03/2016 Date: 20/05/2016 Date: 20/05/2016

Authorised Signatory:

Page: 1 of 1

1714 Bev.5 Dynamic Cone Penetration (DCP) Test Report NZS 4402: test 5.5.2; 1988

Report No:

ARLZO16_DO4GLAF Rov D

Project Name:

218 Matur Hond

Project Location:

Project Number:

AKE2016_0006

Test Date:

10/00/2016

Client:

Cobia Dovolopments Ltd

Client Address:

NO Box 197 Chewy 0946

Testing Locations Selected By:

Auckland Laboratory CMW Geosciences (NZ) Limited Building C, 9 Piermark Drive, Rosedale, NZ 0632 PO Box 300206, Albany, Auckland, NZ 0752 Phone: +64 (09) 4144 632

CMW Field Staff

Client Reference:

Test No.		1		2		3		4		5
Test Location	Ro	ad 2	Ro	acl 2						
Chainage & Offset	20,	/RHS	30,	/LHS	40/	'RHS	50,	/LHS	60/	'RHS
Material & Layer:	Lime stab Cl	AY/Subgrade	Lime stab CI	AY/Subgrade	Lime stab Ct	AY/Subgrade	Lime stab Ct	AY/Subgrade	Lime stab Cl	AY/Subgrade
Depth (mm)	Blow Count	Equiv CBR+	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR [#]	Blow Count	Equiv CBR ⁺
0 - 100	5	10	7	15	6	13	5	10	8	18
100 - 200	4	8	4	8	5	10	4	8	5	10
200 - 300	2	4	3	6	2	4	3	6	6	13
300 - 400	2	4	3	6	2	4	3	6	5	10
400 - 500	2	4	а	6	3	6	3	6	4	8
500 - 600	2	4	4	8	4	8	3	6	5	10
600 - 700	3	6	6	13	4	8	6	13	3	6
700 - 800	4	8	9	20	5	10	6	13	4	8
800 - 900	7	15	10	20+	7	15	8	18	4	8
900 - 1000										
Test No.		6		7		8		9	1	.0
Test Location	Ros	ad 2	Ros	ad 2	Ros	nd 2	Ros	rd 2	Ros	ad 2
Chainage & Offset	70/	LHS	80/	RHS	90/	LHS	100,	/RHS	110	/LH5
Material & Layer:	Lime stab CL	AY/Subgrade	Lime stab CL	AY/Subgrade						
Depth	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*						
0 - 100	7	15	8	18	6	13	8	18	7	15
100 - 200	4	8	5	10	4	8	5	10	5	10
200 - 300	4	8	3	6	3	6	5	10	4	8
300 - 400	3	6	8	18	4	8	5	10	5	10
400 - 500	3	6	7	15	7	15	7	15	7	15
500 - 600	4	8	10	20+	10	20+	7	15	8	18
600 - 700	5	10	8	18	8	18	8	18	7	15
700 - 800	5	10	7	15	5	10	9	20	3	6
800 - 900	6	13	8	18	7	15	11	20+	3	6
900 - 1000										

Prepared by: AP

Checked by:

Authorised Signatory:

Date: 12/04/2016

Date: 18/04/2016 Date: 19/04/2016 This report should only be reproduced in full

*Equivalent CBR values calculated using AUSTROADS (2010) Guide to Pavement Technology Part 2, Figure 5.3, For Fine Grained Cohesive

Page 1 of 4

LEIJA ROU.S. Dynamic Cone Penetration (DCP) Test Report NZS 4402: 1001-6.5 2: 1988

Report No:

AKL2016_0046LAL Rev.0

Project Name:

218 Matus Road

Project Location:

Huapái

Project Number:

AKL2016_0046

Test Date:

16/03/2010

Client:

Cabra Developments Ltd

Client Address:

PO Box 197 Orews 0986

CMW Geosciences (N2) Limited

Building C, 9 Piermark Drive, Rosedale, NZ 0632 PO Box 300206, Albany, Auckland, NZ 0752

Phone: +64 (09) 4144 632

Auckland Laboratory

Festing Locations Selected By:

CMW field Stall

Client Reference:								ACCOUNTED LABORATORY		
Test No.		11		12		3		14		(5
Test Location	Ka	ad 2	Ros	nd 2	Ros	ad 2	Ro	ad 2	Ro	ad 2
Chainage & Offset	120	/RHS	130	/LHS	140	/RHS	150	/LHS	160	/RHS
Material & Layer;	Lime stab Cl	AY/Subgrade	Lime stab CI	AY/Subgrade	Ume stab CL	AY/Subgrade	Lime stab Ct	AY/Subgrade	Lime stab Cl	AY/Subgrade
Depth (mm)	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*						
0 - 100	6	13	6	13	7	15	8	18	9	20
100 - 200	5	10	6	13	9	20	8	18	7	15
200 - 300	3	6	5	10	3	6	7	15	4	8
300 - 400	6	13	5	10	5	10	7	15	à	8
400 - 500	7	15	9	20	6	13	5	10	4	8
500 - 600	7	15	12	20+	8	18	9	20	4	8
600 - 700	7	15	10	20+	8	18	8	18	7	15
700 - 800	8	18	6	13	8	18	3	6	4	8
800 - 900	7	15	9	20	9	20	4	8	4	8
900 - 1000										
Test No.	1	.6	1	7	1	В		9		20
Test Location	Ros	ad 2	Ros	ad 2	Roa	ad 2	Ros	nd 2	Ros	ad 2
Chainage & Offset	170	/LHS	180,	/RHS	190,	/LHS	200,	/RHS	210	/LHS
Material & Layer:	Lime stab CL	AY/Subgrade	Lime stab Cl	AY/Subgrade						
Depth	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*						
0 - 100	9	20	7	15	7	15	10	20+	7	15
100 - 200	5	10	8	18	6	13	5	10	8	18
200 - 300	6	13	5	10	5	10	3	6	3	6
300 - 400	3	6	3	6	2	4	3	6	3	6
400 - 500	4	8	2	4	1	2	3	6	3	6
500 - 600	4	8	2	.4	3	6	3	6	3	6
600 - 700	4	8	1	2	3	6	3	6	4	8
700 - 800	3	6	2	4	3	6	3	6	2	4
800 - 900	3	6	2	4	5	10	4	8	3	6
900 - 1000										

Prepared by: AP

Checked by: 5m3

Authorised Signatory:

Date: 12/04/2016

Date: 18/04/2016

Date: 19/04/2016

This report should only be reproduced in full

*Equivalent CBR values calculated using AUSTROADS (2010) Guide to Pavement Technology Part 2, Figure 5.3, For Fine Grained Cohesive Soils.

Page 2 of 4

1614 Best S Dynamic Cone Penetration (DCP) Test Report 825 4402 (61) 6.5.2-1988

Auckland Laboratory

Report No:

AKL2016_0046LAF Rev.0

Project Name:

218 Matua Board

Project Location:

Huapat

Project Number

AKI 2016 . 00/16

Test Date:

16/03/2016

Client:

Cabria Dievelopmients List

Client Address:

PO Box 197 Orews 0946

Client Reference:

Testing Locations Selected By:

CMW Geosciences (NZ) Limited

Phone: +64 (09) 4144 632

Building C, 9 Piermark Drive, Rosedale, NZ 0632 PO Box 300206, Albany, Auckland, NZ 0752

CIVIW Field Staff

Precision from the state of the state of										_
Test No.	2	1		12	2	23		4		9
Test Location	Ros	rd 2	Ros	ad 4	Ro	ad 4	Ros	ad 4	Ro	nd 4
Chainage & Offset	220,	/RHS	10/	RHS	20/	LHS	30/	RHS	40/	LHS
Material & Layer:	Lime stab CL	AY/Subgrade	Lime stab CL	AY/Subgrade	Lime stab CL	AY/Subgrade	Lime stab Cl	AY/Subgrade	Lime stab Cl	AY/Subgrade
Depth (mm)	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR®	Blow Count	Equiv CBR
o-100	7	15	6	13	11	20+	8	18	8	18
100 - 200	4	8	8	18	Ś	10	a	8	5	10
200 - 300	3	6	4	8	6	13	4	8	6	13
300 - 400	2	4	3	6	4	8	4	8	2	4
400 - 500	2	4	2	4	4	8	4	8	3	6
500 - 600	2	4	2	4	3	6	2	4	3	6
600 - 700	3	6	2	4	2	4	3	6	1	2
700 - 800	2	4	2	4	2	4	3	6	2	4
800 - 900	3	6	2	4	2	4	3	6	2	4
900 - 1000										
Test No.		:6	2	17	2	28		29		30
Test Location	Ros	ad 4	Ros	ad 4	Ro	ad 4	Ro	ad 4	Ro	ad 4
Chainage & Offset	50/	RHS	60/	LHS	70/	'RHS	80,	/LHS	90/	RHS
Material & Layer:	Lime stab CL	AY/Subgrade	Lime stab Cl	AY/Subgrade	Lime stab Ct	.AY/Subgrade	Lime stab Cl	.AY/Subgrade	Lime stab Cl	AY/Subgrade
Depth	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*
0 - 100	8	18	10	20+	6	13	9	20	7	15
100 - 200	4	8	5	10	6	13	8	18	4	8
200 - 300	3	6	S	10	3	6	4	8	2	4
300 - 400	7	15	5	10	5	10	7	15	3	6
400 - 500	3	6	4	8	4	8	5	10	5	10
500 - 600	4	8	3	6	5	10	4	8	4	8
600 - 700	2	4	2	4	3	6	4	8	4	8
700 - 800	3	6	3	6	4	8	4	8	5	10
800 - 900	2	4	3	6	4	8	6	13	3	6
900 - 1000										

Prepared by: AP

Checked by: 5m3

Authorised Signatory:

Date: 12/04/2016

Date: 13/64/2016 Date: 19/04/2016 This report should only be reproduced in full

*Equivalent CBR values calculated using AUSTROADS (2010) Guide to Pavement Technology Part 2, Figure 5.3, For Fine Grained Cohesive Soils.

Page 3 of 4

1814 Best 5 Dynamic Cone Penetration (DCP) Test Report NZS 4402: 1631 6.5.2: 1988

Report No:

AKL2016_0046LAE Rev.0

Project Name:

218 Majua Road

Project Location:

Huapai

Project Number:

AF1.2016 DD46

Test Date:

16/01/2016

Client:

Cabra Developmente tid

Client Address: Client Reference:

PO Bux 197 Orgwa 0946

Auckland Laboratory

CMW Geosciences (NZ) Limited

Building C, 9 Piermark Drive, Rosedale, NZ 0632 PO Box 300206, Albany, Auckland, NZ 0752

Phone: +64 (09) 4144 632

Testing Locations Selected By:

CMW Field Staff

Test No.	3	1	3	2	3	3	3	4	3	5
Fest Location	Ros	rd 4	Roa	id 4	Ros	id 4				
Chainage & Offset	100,	/LHS	110,	RHS	120,	/LHS				
Material & Layer:	Lime stab CL	AY/Subgrade	Lime stab CL	AY/Subgrade	Lime stab CL	AY/Subgrade				
Depth (mm)	Blow Count	Equív CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv ⊂BR*	Blow Count	Equiv CBR
0 - 100	9	20	11	20+	12	20+				
100 - 200	6	13	8	18	7	15				
200 - 300	4	8	8	18	4	8			-	
300 - 400	5	10	4	8	4	8				
400 - 500	6	13	6	13	5	10				
500 - 600	5	10	6	13	4	8				
600 - 700	10	20+	5	10	5	10				
700 - 800	9	20	3	6	5	10				
800 - 900	6	13	7	15	9	20				
900 - 1000										
Test No.	3	36	1	37	- 3	18		39		10
Test Location										
Chainage & Offset										
Material & Layer:										
Depth	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR
0 - 100										
100 - 200										
200 - 300										
300 - 400										
400 - 500										
500 - 600										
600 - 700										
700 - 800										
800 - 900										
900 - 1000										

Prepared by: AP

Checked by: Tmo

Authorised Signatory: fall Agel of

Date: 12/04/2016

Date: 18/04/2016 Date: 19/04/2016 This report should only be reproduced in full

*Equivalent CBR values calculated using AUSTROADS (2010) Guide to Pavement Technology Part 2, Figure 5.3, For Fine Grained Cohesive

Page 4 of 4

Data Rev. 5 Dynamic Cone Penetration (DCP) Test Report NZT 4402. 160 6.5.2: 1988

Report No:

AKL2016_0046LAF Rev.0

Project Name:

218 Matua Road

Project Location:

Project Number:

AKL7016 0046

Test Date:

17/09/2016

Client:

Calica flesial opmoids Et d.

Client Address:

PO Box 197 Orewa 0946

Auckland Laboratory

CMW Geosciences (N2) Limited

Building C, 9 Piermark Drive, Rosedale, NZ 0632 PO Box 300206, Albany, Auckland, NZ 0752 Phone: +64 (09) 4144 632

Festing Locations Selected By:

CMW Field Staff

Acres of Contract								AUDITARION OF THE		
Client Reference:										
Test No.		1		2		3		4		5
Test Location	Ros	ad 4	Ros	ad 4	Ros	ad 4	Ro	ad 4	Ros	nd 4
Chainage & Offset	130	/RHS	140	/LHS	150,	/RHS	160	/LHS	170	/RHS
Material & Layer:	Lime stab Cl	AY/Subgrade	Lime stab Cl	AY/Subgrade	Lime stab CL	AY/Subgrade	Lime stab Cl	AY/Subgrade	Lime stab CL	AY/Subgrade
Depth (mm)	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR+
0 - 100	8	18	11	20+	10	20+	9	20	15	20+
100 - 200	5	10	7	15	5	10	5	10	7	15
200 - 300	-4	8	4	8	4	8	6	13	4	8
300 - 400	6	13	6	13	5	10	8	18	5	10
400 - 500	6	13	6	13	4	8	5	10	6	13
500 - 600	9	20	6	13	5	10	8	18	5	10
600 - 700	8	18	6	13	7	15	8	18	7	15
700 - 800	7	15	6	13	5	10	6	13	5	10
800 - 900	10	204	9	20	5	10	5	10	6	13
900 - 1000										
Test No.		6		7		8		9	1	LO
Test Location	Ro	ad 4	Ro	ad 3	Ros	ad 3	Ro	ad 3	Ro	ad 3
Chainage & Offset	180	/LHS	220	/RHS	230	/LHS	240	/RHS	250	/LHS
Material & Layer:	Lime stab Cl	AY/Subgrade	Lime stab Cl	.AY/Subgrade	Lime stab CL	AY/Subgrade	Lime stab Cl	.AY/Subgrade	Lime stab Cl	AY/Subgrade
Depth	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*
0 - 100	7	15	8	18	11	20+	11	20+	10	20+
100 - 200	6	13	7	15	4	8	6	13	7	15
200 - 300	6	13	3	6	4	8	4	8	5	10
300 - 400	6	13	4	8	5	10	5	10	4	8
400 - 500	6	13	4	8	4	8	4	8	3	6
500 - 600	7	15	4	8	3	6	3	6	3	6
600 - 700	7	15	5	10	3	6	3	6	3	6
700 - 800	5	10	5	10	3	6	4	8	3	6
800 - 900	6	13	5	10	3	6	3	6	3	6
900 - 1000										

Prepared by: AP

Checked by: Jm3 Authorised Signatory:

Date: 12/04/2016

Date: 18/4/2014

This report should only be reproduced in full

*Equivalent CBR values calculated using AUSTROADS (2010) Guide to Pavement Technology Part 2, Figure 5.3, For Fine Grained Cohesive Soils.

Page 1 of 6

LEIGIBOUS Dynamic Cone Penetration (DCP) Test Report NZS 9902 1641 6,522:1988

Report No:

AKL2016_0006LAF Rev.0

Project Name:

218 Matus Road

Project Location:

Huapai

Project Number:

3600_310C3X

Test Date:

Client

Cabra Davelopments (14

Client Address: Client Reference: 17/03/2010

PO Box 197 Orewa 0946

Auckland Laboratory

Auckland Laboratory CMW Geosciences (N2) Limited Building C, 9 Piermark Drive, Rosedale, NZ 0632 PO Box 300206, Albany, Auckland, NZ 0752 Phone: +64 (09) 4144 632

Institut Locations Selected By:

CMW Field Staff

Chent Reference:										
Test No.	1	1	1	2	0	3	1	4	1	S
Test Location	Roa	sd 3	Ros	rd 3	Ros	ad 3	Ros	ad 3	Ros	id 3
Chainage & Offset	260,	/RHS	280	/LHS	290	/RHS	900E	/LHS	310	'RHS
Material & Layer:	Lime stab CL	AY/Subgrade	Lime stab CL	AY/Subgrade	Lime stab Ct	AY/Subgrade	Lime stab CL	AY/Subgrade	Lime stab CI	AY/Subgrade
Depth (mm)	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*
0 - 100	10	20+	14	20+	7	15	13	20+	9	20
100 - 200	9	20	9	20	6.	13	.8	18	6	13
200 - 300	4	8	5	10	5	10	5	10	4	8
300 - 400	4	8	.4	8	3	6	4	8	2	4
400 - 500	4	В	3	6	4	8	4	8	2	4
500 - 600	4	8	4	8	4	-8	4	8	3	6
600 - 700	3	6	5	10	2	4	4	8	4	8
700 - 800	3	6	5	10	4	8	4	8	5	10
800 - 900	4	8	3	6	3	6	5	10	4	8
900 - 1000					1					
Test No.	9	16	1	17		18		19		10
Test Location	Ro	ad 3	Ro	ad 3	Ro	ad 3	Ro	ad 3	Ro	ad 3
Chainage & Offset	320	/LHS	330	/RHS	340	/LHS	350	/RHS	360	/LHS
Material & Layer:	Lime stab CL	.AY/Subgrade	Lime stab Cl	AY/Subgrade	Lime stab CI	AY/Subgrade	Lime stab Cl	AY/Subgrade	Lime stab Cl	AY/Subgrade
Depth	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*
0 - 100	8	18	10	20+	12	20+	11	20+	7	15
100 - 200	5	10	6	13	8	18	8	18	6	13
200 - 300	5	10	4	8	5	10	7	15	4	8
300 - 400	4	8	4	8	4	8	4	8	3	6
400 - 500	5	10	4	8	4	8	7	15	1	2
500 - 600	3	6	4	8	4	8	7	15	3	6
600 - 700	5	10	5	10	4	8	3	6	2	4
700 - 800	6	13	5	10	4	8	4	8	2	4
800 - 900	6	13	6	13	4	8	4	8	3	6
900 - 1000										

Prepared by: AP

Checked by: 353

Authorised Signatory: Juck

Date: 12/04/2016

Date: 18/4/2016

This report should only be reproduced in full

*Equivalent CBR values calculated using AUSTROADS (2010) Guide to Pavement Technology Part 2, Figure 5.3, For Fine Grained Cohesive Solls.

Page 2 of 6

LEIA RIBOT Dynamic Cone Penetration (DCP) Test Report NZI 4403 104 6.5.7 1988

Report No:

AKL2016_0010LAF Kev.0

Project Name:

218 Matur Road

Project Location:

Ниориі

Project Number:

AKL2015_00%

Test Dake:

17/01/2016

Client:

Cabra Devalopments Et d

Client Address: Client Reference:

PO Box 192 Onyvia 0946

Auckland Laboratory

CMW Geosciences (N2) Limited

PO Box 300206, Albany, Auckland, NZ 0752 Phone: +64 (09) 4144 632

tusting Locations Selected By:

CMW Field Staff

Cheur neierence.										
Test No.	2	1	2	2	2	3	2	4	2	5
l'est Location	Rese	rd 3	Ros	id 3	Roj	id 3	Ros	id 3	Rot	id 3
Chainage & Offset	370,	/RHS	380,	/LHS	390,	/RHS	400	/LHS	410,	/RHS
Material & Layer:	Lime stab Ct	AY/Subgrade	Lime stab CL	AY/Subgrade	Lime stab CL	AY/Subgrade	Lime stab CL	AY/Subgrade	Lime stab Ct	AY/Subgrade
Depth (mm)	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR+
0 - 100	9	20	12	20+	8	18	8	18	7	15
100 - 200	5	10	6	13	6	13	4	8	A	8
200 - 300	5	10	5	10	4	8	4	8	3	6
300 - 400	5	10	6	13	4	8	4	8	3	6
400 - 500	7	15	4	8	3	6	2	4	4	8
500 - 600	5	10	4	8	. 4	8	4	8	4	8
600 - 700	2	4	4	8	4	8	4	g	4	8
700 - 800	3	6	5	10	5	10	4	8	4	8
800 - 900	3	6	5	10	7	15	6	13	6	13
900 - 1000										
Test No.		26	1	27		28	L	19		30
Test Location	Ro	ad 3	Ro	ad 1	Ro	ad i	Ro	ad 1	Ro	ad 1
Chainage & Offset	420	/LHS	10/	'RHS	20,	/LHS	30,	'RH5	40,	/LHS
Material & Layer:	Lime stab CI	AY/Subgrade	Lime stab Cl	.AY/Subgrade	Lime stab Ci	.AY/Subgrade	Lime stab CI	AY/Subgrade	Lime stab CI	AY/Subgrade
Depth	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*
0 - 100	7	15	8	18	7	15	6	13	11	20+
100 - 200	4	8	7	15	5	10	5	10	5	10
200 - 300	2	4	5	10	3	6	4	8	4	8
300 - 400	2	4	6	13	4	8	6	13	7	15
400 - 500	3	6	5	10	6	13	4	8	5	10
500 - 600	2	4	3	6	4	8	7	15	5	10
600 - 700	4	8	3	6	4	8	5	10	5	10
700 - 800	4	8	3	6	2	4	5	10	3	6
800 - 900	3	6	3	6	4	8	7	15	4	8
900 - 1000										

This report should only be reproduced in full

Prepared by: AP

Checked by:

Authorised Signatory: -

Date: 12/04/2016

Date: 18/4/2016

*Equivalent CBR values calculated using AUSTROADS (2010) Guide to Pavement Technology Part 2, Figure 5.3, For Fine Grained Cohesive Soils.

Page 3 of 6

1/14 Rows Dynamic Cone Penetration (DCP) Test Report NZS 4402 Det 6.5.2: 1980

Auckland Laboratory CMW Geosciences (N2) Limited

Report No:

AKU2016, DD46LAF Rev.D

Project Name:

218 Matua Road

Project Location:

Hompai

Project Number

AKI/016 0046

Test Date:

17/03/2016

Client:

Client Address:

Calica Disvelopments Ltd.

PO Box 197 Oniwa 0946

Client Reference:

Phone: +64 (09) 4144 632

Building C, 9 Piermark Drive, Rosedale, NZ 0632 PO Box 300206, Allsany, Auckland, NZ 0752

Testing Locations Selected By:

CMW Field Staff

Client Reference:										
Test No.	3	1	8	2	3	3	9	14	8	5
Test Location	Ros	ad 1	Rox	id 1	Ros	nd 1	Ros	rd 1	Ros	rd 1
Chainage & Offset	50/	RHS	60/	LHS	70/	RHS	80,	/CL	90	/CL
Material & Layer:	Litne stab CL	AY/Subgrade	Lime stab CL	AY/Subgrade						
Depth (mm)	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*
0 - 100	13	20+	10	20+	15	20+	12	20+	10	20+
100 - 200	7	15	5	10	6	13	7	15	9	20
200 - 300	В	18	5	10	5	10	4	8	4	8
300 - 400	5	10	5	10	5	10	6	13	4	8
400 - 500	4	8	3	6	4	8	5	10	4	8
500 - 600	3	6	4	8	3 .	6	4	8	4	8
600 - 700	5	10	4	8	3	6	4	8	3	6
700 - 800	7	15	4	8	3	6	3	6	3	6
800 - 900	6	13	4	8	5	10	5	10	4	8
900 - 1000										
Test No.	1	36	3	7	3	8		39	- 4	10
Test Location	Ro	ad 1	Ros	ad 1	Ros	ad 1	Ros	ad 1	Ro	ad 1
Chainage & Offset	100	D/CL	110,	/RHS	120	/LHS	130	/RHS	140	/LHS
Material & Layer:	Lime stab Cl	AY/Subgrade	Lime stab CL	AY/Subgrade	Lime stab CL	AY/Subgrade	Lime stab Cl	AY/Subgrade	Lime stab CI	AY/Subgrade
Depth	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR
0 - 100	12	20+	9	20	7	15	7	15	8	18
100 - 200	5	10	7	15	5	10	6	13	4	8
200 - 300	4	8	4	8	5	10	6	13	3	6
300 - 400	3	6	3	6	3	6	6	13	3	6
400 - 500	5	10	4	8	4	8	4	8	3	6
500 - 600	4	8	3	6	3	6	4	8	3	6
600 - 700	5	10	2	4	3	6	4	8	4	8
700 - 800	4	8	2	4	3	6	4	8	5	10
800 - 900	6	13	3	6	5	10	4	8	8	18
900 - 1000										

Prepared by: AP

Checked by: JM5 Authorised Signatory:

Date: 12/04/2016

Date: 18/04/2016 Date: 19/64/2016 *Equivalent CBR values calculated using AUSTROADS (2010) Guide to Pavement Technology Part 2, Figure 5.3, For Fine Grained Cohesive Soils.

Page 4 of 6

(E14 (Inv.) Dynamic Cone Penetration (DCP) Test Report. NZS 4402; (646 5.2; 1988

Report No:

AKI 2016_0046).AF Rev.0

Project Name:

2 Lit Matur Road

Project Location:

Project Number

Test Date:

Client:

Client Address: Client Reference:

AV3.2016 0046 17/03/2016

ahra Developments Ltd.

PO Rex. 197 Orews 0946

Auckland Laboratory

CMW Geosciences (NZ) Limited

Building C, 9 Piermark Drive, Rosedale, NZ 0632 PO Box 300205, Albany, Auckland, NZ 0752

Phone: +64 (09) 4144 632

Testing Locations Selected By:

CIVIW Field Staff

Chair Milereness										
Test No.	4	1	4	42		43		14	45	
Test Location	Ros	id 1	Ros	Road 1		Road 1		ad 1	Road 1	
Chainage & Offset	150,	/RHS	160	/LHS	170,	/RHS	180/LH5		190/RHS	
Material & Layer:	Lime stab CL	AY/Subgrade	Lime stab CL	AY/Subgrade	Lime stab CL	AY/Subgrade	Lime stab Cl	AY/Subgrade	Lime stab Ct	AY/Subgrade
Depth (mm)	Blow Count	Equiv CBR*	Blow Count	Equiv CBR+	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*
0 - 100	7	15	12	20+	9	20	8	18	8	1.8
100 - 200	5	10	7	15	7	15	6	13	8	18
200 - 300	3	6	б	1.3	3	.6	4	8	3	6
300 - 400	3	6	6	13	4	8	4	8	5	10
400 - 500	3	6	5	10	3	6	5	10	4	8
500 - 600	3	6	4	8	5	10	6	13	6	13
600 - 700	3	6	4	8	6	13	4	8	5	10
700 - 800	4	8	4	8	6	13	5	10	3	6
800 - 900	5	10	4	8	6	13	5	10	3	6
900 - 1000										
Test No.	4	16	4	17	- 2	18	A	19	, i	0
Test Location	Ros	ad 1	Ro	ad 1	Ros	ad 1	Ro	ad 1	Ro	ad 1
Chainage & Offset	200	/LHS	210	/RHS	220	/LHS	230	/RHS	240	/LHS
Material & Layer:	Lime stab CL	AY/Subgrade	Lime stab CL	AY/Subgrade	Lime stab Cl	AY/Subgrade	Lime stab CLAY/Subgrade		Lime stab CLAY/Subgrad	
Depth	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*
0 - 100	8	18	6	13	6	13	6	13	5	10
100 - 200	6	13	6	13	3	6	3	6	4	8
200 - 300	5	10	3	6	3	6	4	8	3	6
300 - 400	4	8	2	4	2	4	2	4	2	4
400 - 500	2	4	2	4	2	4	2.	4	2	4
500 - 600	3	6	1	2	2	4	2	4	2	4
600 - 700	3	6	i	2	2	4	1	2	2	4
700 - 800	3	6	2	4	2	4	1	2	3	6
800 - 900	4	8	2	4	2	4	2	4	3	6
900 - 1000										

Prepared by: AP

Checked by: JMJ

Authorised Signatory:

Date: 12/04/2016

Date: 18/64/2016

Date: 14/04/2016

This report should only be reproduced in full

*Equivalent CBR values calculated using AUSTROADS (2010) Guide to Pavement Technology Part 2, Figure 5.3, For Fine Grained Cohesive Soils.

Page 5 of 6

1F14 Rev.S Dynamic Cone Penetration (DCP) Test Report NZS 4402: 1986 5.5.2: 1986

Re	irog	No	

AR12016_00961AF Riv.D

Project Name:

218 Matus Boad

Project Location:

Hiapai

Project Number:

AK12016, 0006

Test Date:

17/03/2010

Client:

Client Address:

Colora Ogvelapments (d)

PO Box 197 Orewa 0946

Auckland Laboratory

CMW Geosciences (NZ) Limited

Building C, 9 Piermark Drive, Rosedale, NZ 0632 PO Box 300206, Albany, Auckland, NZ 0752

Phone: +64 (09) 4144 632

l'esting Locations Selected By:

CIVIW Field Staff

Client Reference:										
Test No.	5	1	5	52		3	5	A	5	S
Test Location	Roa	id 1	Roa	nd 1						
Chainage & Offset	250/	'RHS	260,	/LHS						
Material & Layer:	Lime stab CL	AY/Subgrade	Lime stab CL	AY/Subgrade						
Depth (mm)	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR®
0 - 100	7	15	7	15						
100 - 200	б	13	5	10						
200 - 300	3	6	3	6						
300 - 400	2	4	3	6						
400 - 500	2	4	3	6						
500 - 600	2	4	2	4						
600 - 700	2	4	2	4						
700 - 800	1	2	2	4						
800 - 900	1	2	3	6						
900 - 1000										
Test No.	5	56		57		58	- 4	59		60
Test Location										
Chainage & Offset										
Material & Layer:										
Depth	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*
0 - 100										
100 - 200										
200 - 300										
300 - 400										
400 - 500	1									
500 - 600										
600 - 700										
700 - 800										
800 - 900										
900 - 1000										

Prepared by: AP

Checked by: 5745

Date: 12/04/2016

Date: 18/04/2016

This report should only be reproduced in full

*Equivalent CBR values calculated using AUSTROADS (2010) Guide to Pavement Technology Part 2, Figure 5.3, For Fine Grained Cohesive Soils.

Page 6 of 6

LF14 Rev.7 Dynamic Cone Penetration (DCP) Test Report NZS 4402: Test 6.5.2: 1988

Report No:

AKL2016_0046LAG Rev.0

Project Name:

218 Matua Road

Project Location:

Huapai

Project Number:

AKL2016_0046

Test Date:

6/06/2017

Tested By:

KP / TG

Client:

Cabra Developments Ltd

Client Address:

PO Box 197 Orewa 0946

Auckland Laboratory

CMW Geosciences (NZ) Limited

Building C, 9 Piermark Drive, Rosedale, NZ 0632 PO Box 300206, Albany, Auckland, NZ 0752

Phone: +64 (09) 4144 632

Testing Locations Selected By:

CMW Field Staff

Tests indicated as not accredited are outside the scope of the laboratory's accreditation

Equivalent CBR Values are not accredited and are outside the scope of the faboratory's accreditation

C	ient	Ref	erence:

Country Assessment St. St.					A comment of the second						
Test No.		1		2		3		4		5	
Test Location	Ros	ad 1	Ros	Road 1		Road 1		nd 1	Road 1		
Chainage & Offset	снос	Centre	CHI	0 Left	CH20	Right	CH30 Left		CH40 Right		
Material & Layer:	CLAY / S	Subgrade	CLAY / S	Subgrade	CLAY / S	ubgrade	CLAY / S	Subgrade	CLAY/S	ubgrade	
Depth (mm)	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	
0 - 100	5	10	5	10	3	6	2	4	3	6	
100 - 200	4	8	5	10	4	8	3	6	2	4	
200 - 300	3	6	2	4	2.	4	4	8	3	6	
300 - 400	2	4	1	2	3	6	4	8	2	4	
400 - 500	2	4	2	4	3	6	5	10	3	6	
500 - 600	2	4	2	4	3	6	6	13	4	8	
600 - 700	2	4	2	4	5	10	8	18	4	8	
700 - 800	3	6	3	6	5	10	7	15	7	15	
800 - 900	2	4	3	6	6	13	7	15	8	18	
900 - 1000											
Test No.		6		7		В		9		0	
Test Location	Ros	ad 1	Ros	ad 1	Ros	ad 1	Roi	ad 1	Ro	ad 1	
Chainage & Offset	CHS	0 Left	CH60	Right	CH70	Left	CH80	Right	CH9	D Left	
Material & Layer:	CLAY/S	Subgrade	CLAY / S	Subgrade	CLAY / S	Subgrade	CLAY / Subgrade		CLAY / Subgrade		
Depth	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR	
0 - 100	4	8	4	8	4	8	4	8	4	8	
100 - 200	3	6	4	8	6	13	4	8	4	8	
200 - 300	3	6	4	8	5	10	4	8	2	4	
300 - 400	2	4	2	4	2	4	2	4	2	4	
400 - 500	3	6	2	4	3	6	2	4	2	4	
500 - 600	3	6	В	6	3	6	4	8	3	6	
600 - 700	5	10	3	6	4	8	4	8	3	6	
700 - 800	5	10	4	8	5	10	5	10	4	8	
800 - 900	6	13	6	13	6	13	5	10	5	10	
900 - 1000											

Prepared by: Checked by:

Date:

7/06/2017

This report should only be reproduced in full

*Equivalent CBR values calculated using AUSTROADS (2010) Guide to Pavement Technology Part 2, Figure S.3, For Fine Grained Cohesive Soils, and are relevant to fine grained cohesive soils only.

Page 1 of 7

Authorised Signatory:

Grey Snock 6

Date: Date: 8/06/2017 8/06/2017

LF14 Rev.7 Dynamic Cone Penetration (DCP) Test Report N25 4402; Test 6.5.2: 1988

Report No:

AKL2016_0046LAG Rev,0

Project Name:

218 Matua Road

Project Location:

Huapai

Project Number:

AKL2016_0046

Test Date:

6/06/2017

Tested By:

KP/TG

Client:

Cabra Developments Ltd

Client Address:

PO Box 197 Orewa 0946

Auckland Laboratory

CMW Geosciences (NZ) Limited

Building C, 9 Piermark Drive, Rosedale, NZ 0632 PO Box 300206, Albany, Auckland, NZ 0752

Phone: +64 (09) 4144 632

Testing Locations Selected By:

CMW Field Staff

Tests indicated as not accredited are outside the scope of the laboratory's accreditation

Equivalent CBR Values are not accredited and are outside the scope of the Jahoratory's accreditation

Client	Rei	erence:

44,600,000,000,000										
Test No.	1	1	1	12		13		4	15	
Test Location	Roi	nd 1	Ros	id 1	Road 1		Vogwill Crescent		Vogwill Crescent	
Chainage & Offset	CH100	Right	CH11	0 Left	CH120	Right	CHØ Left		CH10 Left	
Material & Layer:	CLAY/S	ubgrade	CLAY / S	ubgrade	CLAY / S	ubgrade	CLAY / S	ubgrade	CLAY / S	ubgradė
Depth (mm)	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*
0 = 100	2	4	2	4	3	6	4	8	3	6
100 - 200	3	6	3	6	4	8	4	8	4	8
200 - 300	3	6	4	8	3	6	2	4	4	8
300 - 400	2	4	2	4	2	4	2	4	2	4
400 - 500	3	6	2	4	2	4	2	4	2	4
500 - 600	2	4	2	4	2	4	3	6	2	4
600 - 700	В	6	3	6	2	4	3	6	4	8
700 - 800	2	4	3	6	3	6	4	8	4	8
800 - 900	3	6	2	4	2	4	5	1.0	4	8
900 - 1000										
Test No.	1	.6	1	7	1	.8		.9		20
Test Location	Vogwill	Crescent	Vogwill	Crescent	Vogwill	Crescent	Vogwill	Crescent	Vogwill	Crescent
Chainage & Offset	CH20	Right	снз	0 Left	CH40 Right		CH5	0 Left	CHEC	Right
Material & Layer:	CLAY/S	Subgrade	CLAY/	Subgrade	CLAY / S	CLAY / Subgrade		CLAY / Subgrade		Subgrade
Depth	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*
0 - 100	2	4	2	4	4	8	5	10	4	8
100 = 200	4	8	4	8	4	8	6	13	4	8
200 - 300	4	8	2	4	4	8	4	8	3	6
300 - 400	3	6	2	A	2	4	2	4	2	4
400 - 500	3	6	3	6	3	6	4	8	4	8
500 - 600	4	8	4	8	3	6	3	6	4	8
600 - 700	6	13	6	13	5	10	4	8	6	13
700 - 800	6	13	6	13	5	10	6	13	6	13
800 - 900	6	13	7	15	4	8	- 6	13	6	13
900 - 1000										

This report should only be reproduced in full

Prepared by: Checked by:

Date: Date: 7/06/2017

8/06/2017

*Equivalent CBR values calculated using AUSTROADS (2010) Guide to Pavement Technology Part 2, Figure 5.3, For Fine Grained Cohesive Soils, and are relevant to line grained cohesive soils only.

Page 2 of 7

Authorised Signatory:

TG

Date:

LF14 Rev.7 Dynamic Cone Penetration (DCP) Test Report NZS 4402: Test 6.5.2: 1988

Auckland Laboratory CMW Geosciences (NZ) Limited

Report No:

AKL2016_0046LAG Rev.0

Project Name:

218 Matua Road

Project Location:

Huapai

Project Number:

AKL2016_0046

Test Date:

6/06/2017

Tested By:

KP / 1G

Client:

Client Address:

Cabra Developments Ltd PO Box 197 Orewa 0946

Client Reference:

Phone: +64 (09) 4144 632

Testing Locations Selected By:

Building C, 9 Piermark Drive, Rosedale, NZ 0632

PO Box 300206, Albany, Auckland, NZ 0752

CMW Field Staff

Tests indicated as not accredited are sutside the scope of the laboratory's accreditation

Equivalent CBR Values are not accredited and are outside the scope of the laboratory's accreditation

chefft Neiterenten											
Test No.	1	11	3	22		23		24	25		
Test Location	Vogwill	Crescent	Vogwill	Vogwill Crescent		Vogwill Crescent		Vogwill Crescent		Vogwill Crescent	
Chainage & Offset	CH7	D Left	CH8C	Right	CH96) Left	CH100 Right		CH110 Left		
Material & Layer:	CLAY / S	ubgrade	CLAY / S	Subgrade	CLAY / S	ubgrade	CLAY / S	Subgrade	CLAY / S	ubgrade	
Depth (mm)	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	
0 - 100	5	10	6	13	5	10	4	8	3	6	
100 - 200	4	8	6	13	4	8	11	20+	5	10	
200 - 300	4	8	3	6	3	6	10	20+	6	13	
300 - 400	2	4	2	4	3	6	4	8	3	6	
400 - 500	4	8	4	8	4	8	4	8	2	4	
500 - 600	4	8	4	8	4	8	4	8	2	4.	
600 - 700	5	10	5	10	5	10	3	6	2	4	
700 - 800	6	13	6	13	5	10	3	6	4	8	
800 - 900	5	10	6	13	4	8	3	6	4	8	
900 - 1000											
Test No.	2	6		17	2	8	- 2	19		30	
Test Location	Vogwill	Crescent	Vogwill	Crescent	Vogwill	Crescent	Vogwill	Crescent	Vogwill	Crescent	
Chainage & Offset	CH12) Right	CH13	0 Left	CH14	Right	CH15	io Left	CH16	O Right	
Material & Layer:	CLAY / S	ubgrade	CLAY / S	Subgrade	CLAY / S	ubgrade	CLAY / Subgrade		CLAY / Subgrade		
Depth	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	
0-100	4	8	4	8	4	8	4	8	4	8	
100 - 200	4	В	4	8	4	8	4	8	2	4	
200 - 300	3	6	3	6	4	8	2	4	2	4	
300 - 400	3	6	2	4	2	4	2	4	4	8	
400 - 500	3	6	3	6	2	4	2	4	3	6	
500 - 600	3	6	4	8	2	4	4	8	2	4	
600 - 700	3	6	4	8	3	6	4	8	3	6	
700 - 800	3	6	4	8	2	4	4	8	4	8	
800 - 900	4	В	4	8	3	6	4	8	4	8	
000 000			12			100					

Prepared by:

TG

Date: Date:

Date:

7/06/2017

Checked by: Authorised Signatory:

8/06/2017 8/05/2017

*Equivalent CBR values calculated using AUSTROADS (2010) Guide to Pavement Technology Part 2, Figure 5:3, For Fine Grained Cohesive Soils, and are relevant to fine grained cohesive soils only.

Page 3 of 7

LF1/4 Rev.7 Dynamic Cone Penetration (DCP) Test Report NZS 4402: Test 6.5.2: 1988

Auckland Laboratory

Report No:

AKL2016_0046LAG Rev.0

Project Name:

218 Matua Road

Project Location:

Huapai

Project Number:

AKL2016_0046

Test Date:

6/06/2017

Tested By:

KP/TG

Client:

Cabra Developments Ltd

Client Address: Client Reference: PO Box 197 Orewa 0946

Testing Locations Selected By:

Phone: +64 (09) 4144 632

CMW Geosciences (NZ) Limited

Building C, 9 Piermark Drive, Rosedale, NZ 0632

PO Box 300206, Albany, Auckland, NZ 0752

CMW Field Staff

Tests indicated as not accredited are outside the scope of the laboratory's accreditation

Equivalent Clift Values are not accredited and are outside the scope of the Jaboratory's accreditation

chem Reference.										
Test No.		31		32		33		34	-	35
Test Location	Vogwill	Crescent	Vogwill	Vogwill Crescent		Vogwill Crescent		Crescent	Vogwill	Crescent
Chainage & Offset	CH1	70 Left	CH180	Centre	CH19	O Right	CH200 Left		CH210 Left	
Material & Layer:	CLAY /	Subgrade	CLAY / S	CLAY / Subgrade		Subgrade	CLAY /	Subgrade	CLAY / Subgrade	
Depth (mm)	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*
0 - 100	4	В	2	4	4	8	4	8	4	В
100 - 200	2	4	3	6	4	8	4	8	3	6
200 - 300	1	2	3	6	3	6	4	8	3	6
300 - 400	2	4	3	6	3	6	5	10	4	8
400 - 500	3	6	2	4	4	8	5	10	5	10
500 - 600	4	8	4	8	4	8	10+	20+	7	15
600 - 700	4	8	4	8	5	10			8	18
700 - 800	4	8	4	8	6	13			8	18
, 800 - 900	4	8	4	8	5	10			8	18
900 - 1000										
Test No.	8	16	3	7	- 5	88	3	19		10
Test Location	Vogwill	Crescent	Vogwill	Crescent	Vogwill	Crescent	Len Irela	and Drive	Len frela	ind Drive
Chainage & Offset	CH22	0 Left	CH230	Right	CH24	0 Left	CHC	Left	CH10	Right
Material & Layer:	CLAY / S	ubgrade	CLAY / S	ubgrade	CLAY / S	ubgrade	CLAY / S	ubgrade	CLAY/S	Subgrade
Depth	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*
0 - 100	4	8	4	8	4	8	6	13	5	10
100 - 200	3	6	4	8	7	15	5	10	10	20+
200 - 300	3	6	4	8	5	10	3	6	8	18
300 - 400	2	4	6	13	6	13	3	6	5	10
400 - 500	4	8	5	10	5	10	3	6	4	8
500 - 600	7	15	4	8	4	8	7	15	4	8
600 - 700	6	13	4	8	4	8	9	20	7	15
700 - 800	7	15	4	8	4	8	7	15	4	8
800 - 900	6	13	4	8	4	8	6	13	4	8
900 - 1000										

Prepared by:

Date: Date: 7/06/2017

This report should only be reproduced in full

*Equivalent CBR values calculated using AUSTROADS (2010) Guide to Pavement Technology Part 2, Figure 5.3, For Fine Grained Cohesive Soils, and are relevant to fine grained cohesive soils only.

Page 4 of 7

Checked by: Authorised Signatory:

Date:

B/06/2017

LF14 Rev.7 Dynamic Cone Penetration (DCP) Test Report NZS 4402(Test 6.5,2: 1988

Report No:

AKL2016_0046LAG Rev.0

Project Name:

218 Matua Road

Project Location:

Huapal

Project Number:

AKL2016_0046

Test Date:

6/06/2017

Tested By:

KP / TG

Client:

Cabra Developments Ltd

Client Address:

PO Box 197 Orewa 0946

Auckland Laboratory

CMW Geosciences (NZ) Limited

Building C, 9 Piermark Drive, Rosedale, NZ 0632

PO Box 300206, Albany, Auckland, NZ 0752

Phone: +64 (09) 4144 632

Testing Locations Selected By:

CMW Field Staff

Tests indicated as not accredited are outside the scope of the laboratory's accreditation

Equivalent CBR Values are not accredited and are outside the scope of the laboratory's accreditation

٠	Land	Day	feren	ari da d

			-			and the second s					
Test No.		11		42		43		14	45		
Test Location	Len irela	and Drive	Len Irel	and Drive	Len Ireland Drive		Len Ireland Drive		Len Ireland Drive		
Chainage & Offset	CH2	0 Left	CH30	Right	CH40	CH40 Right		CH50 Left		CH60 Right	
Material & Layer:	CLAY / S	Subgrade	CLAY /	Subgrade	CLAY / S	ubgrade	CLAY / S	Subgrade	CLAY / S	Subgrade	
Depth (mm)	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	
0 - 100	7	15	5	10	8	18	8	18	6	13	
100 - 200	9	20	7	15	7	15	14	20+	6	13	
200 - 300	6	13	5	10	6	13	7	15	5	10	
300 - 400	6	13	10	20+	6	13	6	13	6	13	
400 - 500	5	10	6	13	4	8	7	15	4	8	
500 - 600	5	10	6	13	6	13	7	15	5	10	
600 - 700	8	18	8	18	6	13	6	13	6	13	
700 - 800	6	13	8	18	4	8	6	13	6	13	
800 - 900	6	13	9	20	4	8	6	13	6	13	
900 - 1000											
Test No.	4	16		17	4	8	4	19		0	
Test Location	Len Irela	ind Drive	Len Irela	and Drive	Len Irela	nd Drive	Len Irela	and Drive	Len Irela	nd Drive	
Chainage & Offset	CH70	D Left	CH8	0 Left	CH90 Left		CH10	0 Left	CH11) Right	
Material & Layer:	CLAY / S	ubgrade	CLAY/	Subgrade	CLAY / Subgrade		CLAY / Subgrade		CLAY / Subgrade		
Depth	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	
0 - 100	5	10	6	13	9	20	.5	10	4	8	
100 - 200	7	15	6	13	6	13	6	13	5	10	
200 - 300	6	13	6	13	5	10	6	13	3	6	
300 - 400	6	13	4	8	2	4	3	6	3	6	
400 - 500	9	20	6	13	2	4	4	8	3	6	
500 - 600	7	15	8	18	4	8	4	8	3	6	
600 - 700	8	18	5	10	2	4	4	8	2	4	
700 - 800	8	18	7	15	4	8	4	8	2	4	
800 - 900	8	18	8	18	4	8	4	8	2	4	
900 - 1000											

Prepared by:

Date:

7/06/2017

Date: 8/06/2017 Date:

This report should only be reproduced in full

*Equivalent CBR values calculated using AUSTROADS (2010) Guide to Pavement Technology Part 2, Figure 5.3, For Fine Grained Cohesive Soils, and are relevant to fine grained cohesive soils only.

Page Sof7

LF14 Rev.7 Dynamic Cone Penetration (DCP) Test Report NZS 4402: Test 6.5.2: 1988

Report No:

AKL2016_0046LAG Rev.0

Project Name:

218 Matua Road

Project Location:

Huapai

Project Number:

AKL2016_0046

Test Date:

6/06/2017

Tested By:

KP/TG

Client:

Cabra Developments Ltd

Client Address:

PO Box 197 Orewa 0946

Auckland Laboratory

CMW Geosciences (NZ) Limited

Building C, 9 Piermark Drive, Rosedale, NZ 0632 PO Box 300206, Albany, Auckland, NZ 0752

Phone: +64 (09) 4144 632

Testing Locations Selected By:

CMW Field Staff

Tests indicated as not accredited are putside the scope of the laboratory's accreditation

Equivalent CBR Values are not accredited and are outside the scope of the Jaboratory's accreditation

Client	Rei	ference:
CHEIL	13901	CI CITCE!

Test No.	5	1		12	5	3	5	14	55			
Test Location	Len Irela	and Drive	Len Irela	and Drive	Len frela	and Drive	Len irela	and Drive	Len Ireland Drive			
Chainage & Offset	CH12	to Left	CH130	Centre	CH140) Right	CH15	O Left	CH160 Left			
Material & Layer:	CLAY / S	Subgrade			CLAY / S	ubgrade	CLAY / S	ubgrade	CLAY / Subgrade			
Depth (mm)	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*		
0 - 100	5	10	5	Equiv CBR* 10 8 6 4 4 4 4 6 4 8 6 A 8 6 8 6 8 8 6 9 9 9 9 9 9 9 9 9 9 9 9	8	18	4	8	8	18		
100 - 200	8	18	4	8	4	8	3	6	8	18		
200 - 300	3	6	3	6	4	8	3	6	8	18		
300 - 400	3	6	2	4	3	6	1	2	5	10		
400 - 500	3	6	2	4	4	8	1.	2	1	2		
500 - 600	2	4	2	4	2	4	2	4	2	4		
600 - 700	1	2	2	4	3	6	2	4	3	6		
700 - 800	1	2	3	6	3	6	3	6	2	4		
800 - 900	2	4	2	4	4	8	4	8	2	4		
900 - 1000												
Test No.	5	6		57								
Test Location	Len Irela	ind Drive	Len Irela	and Drive								
Chainage & Offset	CH170	0 Right	CH180 Left CLAY / Subgrade									
Material & Layer:	CLAY/S	Subgrade										
Depth	Blow Count	Equiv CBR+	Blow Count	Equiv CBR*	Blow Count	Equiv CBR+	Blow Count	Equiv CBR*	Blow Count	Equiv CBR		
0 - 100	10	20+	4	8								
100 - 200	7	15	Б	13								
200 - 300	6	13	4	8			W					
300 - 400	3	6	2	4								
400 - 500	2	4	2	4								
500 - 600	3	6	4	2								
600 - 700	4	8	2	4								
700 - 800	4	8	2	4				11.7				
800 - 900	4	8	3	6								
900 - 1000												

Prepared by: Checked by:

Date: Date:

7/06/2017

8/06/2017

This report should only be reproduced in full

*Equivalent CBR values calculated using AUSTROADS (2010) Guide to Pavement Technology Part 2, Figure 5.3, For Fine Grained Cohesive Solls, and are relevant to fine grained cohesive solls only.

Page 6 of 7

Authorised Signatory:

8/06/2017

LF14 Rev.7 Dynamic Cone Penetration (DCP) Test Report NZS 4402; Test 6.5,2; 1988

Report No:

AKL2016_0046LAH Rev.0

Project Name:

218 Matua Road

Project Location:

Project Number:

AKL2016_0046

Test Date:

22/06/2017

Tested By:

Client:

Cabra Developments Ltd

Client Address:

PO Box 197 Orews 0946

Auckland Laboratory

CMW Geosciences (NZ) Limited

Building C, 9 Piermark Drive, Rosedale, NZ 0632

PO Box 300206, Albany, Auckland, NZ 0752

Phone: +64 (09) 4144 532

Testing Locations Selected By:

CMW Field Staff

Tests indicated as not accredited are outside the scope of the laboratory's accreditation

Equivalent CDR Values are not accradited and are outside the scope of the laboratory's accreditation

Client	Ref	erence:	

		1.000									
Test No.	1			2		3		4	5		
Test Location	Ro	ad 1	Ro	ad 1	Ros	ad 1	Ro	ad 1	Vogwill Crescent CH20 Right		
Chainage & Offset	СНО	Centre	CH1	0 Left	CH8C	Right	CH10	O Right			
Material & Layer:	CLAY / :	Subgrade	CLAY/	Subgrade	CLAY / S	iubgrade	CLAY / S	Subgrade	CLAY / S	Subgrade	
Depth (mm)	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR	
0 - 100	4	8	4	8	4	8	3	6	3.	6	
100 - 200	5	10	3	б	4 8		3	6	3	6	
200 - 300	2	4	2	4	5	10	3	6	2	4	
300 - 400	2	4	2	4.	2	4	2	4	2	4	
400 - 500	2	4	3	6	2	4	2	4	2	4	
500 - 600	1	2	3	6	2	4	2	4	4	8	
600 - 700	2	4	4	8	3	6	4	8	4	8	
700 - 800	2	4	4	8	4	8	5	10	4	8	
800 - 900	2	4	5	10	5	10	5	10	4	8	
900 - 1000											
Test No.		6		7		3	,	9	1	.0	
Test Location	Vogwill	Crescent	Vogwill Crescent		Vogwill Crescent		Vogwill	Crescent	Len Ireland Drive		
Chainage & Offset	CH120	O Right	CH140 Right		CH180	Centre	CH22	0 Left	CH90 Left		
Material & Layer:	CLAY / S	Subgrade	CLAY / Subgrade		CLAY / S	ubgrade	CLAY/S	ubgrade	CLAY / Subgrade		
Depth	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*	Blow Count	Equiv CBR	
0 - 100	3	6	3	6	2	4	5 10		4	8	
100 - 200	4	8	3	6	5	10	7	15	4	8	
200 - 300	3	6	3	6	5	10	3	6	3	6	
300 - 400	3	6	2	4	3	6	3	6	2	4	
400 - 500	2	4	2	4	2	4	4	8	3		
500 - 600	4	8	1	2	2	4	5	10	4	8	
600 - 700	4	.8	2	4	3	6	5	10	4	8	
700 - 800	4	8	2	4	3	6	7	15	4	8	
800 - 900	4	8	2	4	4	8	8	18	4	8	
900 - 1000										-	

Prepared by: Checked by:

Date:

23/06/2017

Date: Date:

23/06/2017 5017

This report should only be reproduced in full

*Equivalent CBR values calculated using AUSTROADS (2010) Guide to Pavement Technology Part 2, Figure 5.3, For Fine Grained Cohesive Soils, and are relevant to fine grained cohesive soils only.

Page 1 of 3

LF14 Rev.7 Dynamic Cone Penetration (DCP) Test Report NZS 4402: Test 6.5,2: 1988

Auckland Laboratory

Report No:

AKL2016_0046LAH Rev.0

Project Name:

218 Matua Road

Project Location:

Project Number:

AKI,2016_0046

Test Date:

22/06/2017

Tested By: Client:

Client Reference:

Cabra Developments Ltd PO Box 197 Orewa 0946

Client Address:

Testing Locations Selected By:

Phone: +64 (09) 4144 632

CMW Geosciences (NZ) Limited

Building C, 9 Piermark Drive, Rosedale, NZ 0632

PO Box 300206, Albany, Auckland, NZ 0752

CMW Field Staff

Tests indicated as not accredited are outside the scope of the laboratory's accreditation

Equivalent CBR Values are not accredited and are outside the scope of the laboratory's accreditation

Test No.	1	1	12			.3	1	.4	15			
Test Location	Len Irela	and Drive	Len Irela	ind Drive	Len Irela	and Drive	Len Irela	and Drive	Len Ireland Drive			
Chainage & Offset	CH11	O Right	CH120 Left		CH14	0 Right	CH16	à Left	CH180 Left			
Material & Layer:	CLAY/S	Subgrade	CLAY / S	Subgrade	CLAY / S	Subgrade	CLAY / S	Subgrade	CLAY/S	ubgrade		
Depth (mm)	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*								
0-100	4	8	4	8	5	10	4	8	5	10		
100 - 200	3	6	4	8	4	8	4	8	4	8		
200 - 300	3	6	3	6	3	6	4	8	3	6		
300 - 400	3	6	3	6	2	4	2	4	2	4		
400 - 500	2	4	2	4	2	4	2	4	2	4		
500 - 600	4	8	2	4	2	4	2	4	4	4	2	4
600 - 700	2	4	2	4	2	4	2	4	2	4		
700 - 800	3	6	2	4	2	4	4	8	2	4		
800 - 900	4	8	3	6	4	8	4	8	2	4		
900 - 1000							1					
Test No.												
Test Location												
Chainage & Offset												
Material & Layer:												
Depth	Blow Count	Equiv CBR*	Blow Count	Equiv CBR*								
0 - 100												

100 - 200 200 - 300 300 - 400 500 - 600 600 - 700 700 - 800 800 - 900 900 - 1000

Prepared by:

23/06/2017

23/06/2017

This report should only be reproduced in full

*Equivalent CBR values calculated using AUSTROADS (2010) Guide to Pavement Technology Part 2, Figure 5.3, For Fine Grained Cohesive Soils, and are relevant to fine grained cohesive soils only.

Page 2 of 3

Checked by: Authorised Signatory:

LF13 Rev 4 IMPACT HAMMER TESTING REPORT

Building C, 9 Piermark Drive, Rosedale, NZ 0632 PO Box 300206, Albany, Auckland, NZ 0752

TEST STANDARD: ASTM D5874:2016 FIELD PROCEDURE A.

Project:

218 Matua Road

Project No:

AKL2016 0046

Location:

Huapai

Report No:

AKL2016_0046LAI Rev 0

Report Date:

22/06/2017

Client:

Cabra Developments Ltd

Client Address:

PO Box 197 Orewa 0946

Testing Locations Selected By:

Phone: +64 (09) 4144 632

CMW Geosciences (NZ) Limited

CMW Field Staff

LANZ ACCREDITED LABORATORY

Auckland Laboratory

All tests reported herein have been performed in accordance with the laboratory's scope of accreditation

Measurements marked * are not accredited and are outside of the scope of the laboratory's accreditation

Client Reference:	ACCREDITED CAS	okatoki scope	- 17 PA 15 PA 15 PA 15 PA			
Tést No.:	Date Tested:	Test Location	Material**	Impact Value**	Inferred * CBR %	Notes
сно	22/06/2017	Road 1	Clay	6	3	
СН10	22/06/2017	Road 1	Clay	10	7	
СН80	22/06/2017	Road 1	Clay	10	7	
CH100	22/06/2017	Road 1	Clay	10	7	
СН20	22/06/2017	Vogwill Crescent	Clay	18	23	
CH120	22/06/2017	Vogwill Crescent	Clay	16	18	
СН140	22/06/2017	Vogwill Crescent	Clay	24	40	
СН180	22/06/2017	Vogwill Crescent	Clay	20	28	
CH220	22/06/2017	Vogwill Crescent	Clay	24	40	
СН90	22/06/2017	Len Ireland Drive	Clay	32	72	
СН110	22/06/2017	Len Ireland Drive	Clay	30	63	
CH120	22/06/2017	Len Ireland Drive	Clay	26	47	
CH140	22/06/2017	Len Ireland Drive	Clay	18	23	
CH160	22/06/2017	Len Ireland Drive	Clay	20	28	
CH180	22/06/2017	Len Ireland Drive	Clay	10	7	

** Measurements with a maximum particle size > 37.5mm are outside of the scope of ASTM D5874:2016 Field Procedure A. Impact Values on such materials are not accredited and are outside of the scope of the laboratory's accreditation.

Created By:

KP

Date: 26/06/2017

This report should only be reproduced in full

Checked By:

TMT

Date: 26/06/2017

* Inferred CBR Calculation: CBR= IV2 x0.07

Authorised Signatory: arey Small fr Date: 26/06/2017

Page 1 of 2

Page 2 of 2

LF11 Rev 5 Soil Field Density NDM Direct Transmission with VSS Report

Auckland Laboratory

Test Methods:

NZS 4402.2.1:1986

NZGS:August 2001

NZS 4407.4.2.2:2015

CMW Geosciences

Building C, 9 Piermark Drive, Rosedale, NZ 0632 PO Box 300206, Albany, Auckland, NZ 0752

Phone: +64 (09) 4144 632

Project: 218 Matua Road Project No:

AKL2016 0046

Location: Huapai Report No:

AKL2016_0046LAJ Rev. 1

Report Date:

13/02/2018

Client: Client Address: Client Reference: Cabra Developments Limited

Tests indicated as not accredited are outside the scope of the laboratory's accreditation

Solid Density:

Testing Locations Selected By:

Notes:

Measurements marked * are not accredited and are outside the scope of the laboratories accreditation

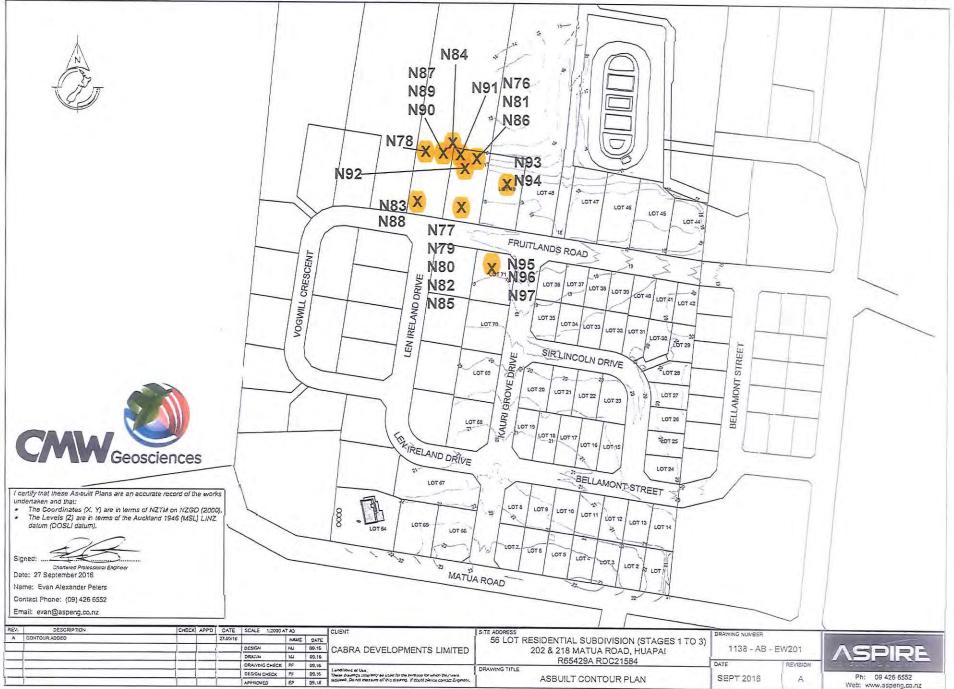
CMW Field Staff

Assumed

Date Sampled Sar		Test Location	Soil Description	- 1	n-situ Va	ne Shear	Strength	ıs	Field and Laboratory Testing Data									
	Sample No.			Test 1 (kPa)	Test 2 (kPa)	Test 3 (kPa)	Test 4 (kPa)	Ave.	Gauge Wet Density (t/m³) **	Gauge Dry Density (t/m³)	Gauge Water Content (%)	Gauge Air Voids (%)	Gauge Probe Depth	Oven Water Content (%)	Solid Density (t/m³) *	Oven Dry Density (t/m³)	Calculated Air Voids (%)	Comments
23/11/2017	N76	Refer to site plan	CLAY	178	121	158	149	152	1.7718	1,3307	33.1	6.52	200	35.6	2.7	1.31	5.1	
	N77	Refer to site plan	Lime Stabilized CLAY	191	158	192	153	174	1.6488	1.2679	30,1	14.85	300	, 777				No sample taken
	N78	Refer to site plan	Lime Stabilized CLAY	153	132	158	162	151	1.8593	1.3748	35.2	0.53	300	38.7	2.7	1,34		
24/11/2017	N79	Refer to site plan	Lime Stabilized CLAY	178	178	187	194	184	1.8100	1.4013	29.0	7.20	50	32.0	2.7	1.37		
	N80	Refer to site plan	Lime Stabilized CLAY	187	178	187	178	183	1.8508	1.4116	31.0	3.70	200	29.8	2.7	1,43		Retest of N77
	N81	Refer to site plan	CLAY	228+	194	220	228+	218+	1.8161	1.3501	34.5	3.30	300	34.2	2.7	1.35		
27/11/2017	N82	Refer to site plan	CLAY	129	226	145	162	166	1.7800	1.3318	33.7	5.70	300	32.9	2.7	1.34		
	N83	Refer to site plan	CLAY	226+	220	226	199	218+	1.7846	1.3036	36.9	3.80	300	35.6	2.7	1.32	3.9	
1/12/2018	N84	Refer to site plan	CLAY	UTP	UTP	UTP	UTP	UTP	1.8761	1.4892	27.0	2.10	300	30.7	2.7	1.44		
4/12/2017	N85	Refer to site plan	CLAY	162	178	226	UTP	189+	1.8270	1.4270	29.0	5.43	300	26.6	2.7	1.44	7610	
	N86	Refer to site plan	CLAY	UTP	UTP	UTP	UTP	UTP	1.8700	1.4250	31.0	2.66	300	25.9	2.7	1,49	2.7	
5/12/2017	N87	Refer to site plan	CLAY	UTP	UTP	UTP	UTP	UTP	1.8340	1.4067	30.4	5.07	300	26.3	2.7	1.45		
	N88	Refer to site plan	CLAY	UTP	UTP	UTP	UTP	UTP	1.8728	1.4347	30.5	2.97	300	33.4	2.7	1.40	1.1	
6/12/2017	N89	Refer to site plan	CLAY	145	129	145	162	145	1.8228	1.3716	32.9	3.90	300	35.0	2.7	1.35		
11/12/2017	N90	Refer to site plan	CLAY	178	139	226	226	192	1.8100	1.3168	37.0	1.80	300	35.5	2.7	1.34	3.1	
12/12/2017	N91	Refer to site plan	CLAY	123	145	162	145	144	1.7910	1.3372	33.0	4.98	300	43.2	2.7	1.25	-0.3	
13/12/2017	N92	Refer to site plan	CLAY	UTP	UTP	220	UTP	220+	1,8020	1.3497	34.7	4.17	300	38.8	2.7	1.30	1.5	
18/12/2017	N93	Refer to site plan	CLAY	UTP	UTP	UTP	166	166+	1.9041	1.4961	27.0	3.60	300	21.9	2.7	1.56		
20/12/2017	N94	Refer to site plan	CLAY	UTP	UTP	UTP	UTP	UTP	1.9620	1.4870	35.0	0.80	300	34.5	2.7	1.46	-4.4	
17/01/2018	N95	Refer to site plan	CLAY	UTP	UTP	UTP	UTP	UTP	1.7060	1.3042	30.8	9,45	300	26.3	2.7	1.35	14.0	
30/01/2018	N96	Refer to site plan	CLAY	UTP	UTP	UTP	UTP	UTP	1.8460	1.3911	32.0	2,60	300	19.7	2.7	1.54	2.04	Re test of N94
12/02/2018	N97	Refer to site plan	CLAY	UTP	UTP	UTP	UTP	UTP	1.8460	1.3911	32.0	2.60	300	33.1	2.7	1.39		Re test of N95

This report should only be reproduced in full.

This report supersedes AKL2016_0046LAJ Rev.0


Created By: JLM Checked By: JMJ

Authorised Signatory:

Date: 09/02/2018 Date:13/02/2018 Date: 19/01/2018 ** Gauge Wet Densities outside of the calibrated range of 1.728 to 2.756 t/m³ are not accredited and are outside the laboratories scope of accreditation.

Page:

1 of 2

